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Abstract 

Crowdsourcing is increasingly used to engage people to contribute data for a variety of purposes 

to support decision-making and analysis. A common assumption in many crowdsourcing projects 

is that experience leads to better contributions. In this research, we demonstrate limits of this 

assumption. We argue that greater experience in contributing to a crowdsourcing project can lead 

to a narrowing in the kind of data a contributor provides, causing a decrease in the diversity of 

data provided. We test this proposition using data from two sources – comments submitted with 

contributions in a citizen science crowdsourcing project, and three years of online product 

reviews. Our analysis of comments provided by contributors shows that the length of comments 

decreases as the number of contributions increases. Also, we find that the number of attributes 

reported by contributors decreases as they gain experience. These finding support our prediction, 

suggesting that the diversity of data provided by contributors declines over time. 
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Introduction 

Crowdsourcing involves outsourcing tasks traditionally carried out by employees, or 

others tightly linked to an organization or group, to an unknown and undefined group of 

people (Afuah & Tucci, 2012; Howe, 2006). More organizations, groups and individuals 

(crowdsourcers) are turning to crowdsourcing for tasks that include the collection and 
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analysis of distributed data (Conrad and Hilchey, 2011; Cooper et al., 2007). For 

crowdsourcing projects, the quality of data collected is of utmost importance (Schenk and 

Guittard 2011).  

One strategy to increase data quality is to control who gets to do a crowdsourcing task. 

To ensure that crowdsourced data is of high quality, crowdsourcers often decide who to 

recruit as contributors (Gura, 2013; Malone et al. 2010). A key issue in this regard is 

whether to recruit only those with prior experience in the data collection task, or to allow 

(or even encourage) participation by contributors with a range of experience or domain 

knowledge, including novices (Ogunseye and Parsons 2016; Lukyanenko, Parsons & 

Wiersma 2016).  

Crowdsourcers must also concern themselves with how to recruit, giving rise to two 

important recruitment questions. For a new project, should participants be recruited from 

an existing crowd (e.g., from a similar project, within the same platform, such as 

Zooniverse) or should a new recruitment campaign be run? Should crowdsourcers 

actively recruit new participants through the lifecycle of their projects (i.e. continuous 

recruitment) or should recruitment be a singular event at the start of a project? We 

consider these issues as questions of the extent of crowd reuse - a crowdsourcing strategy 

that consists of drawing from the same crowd repeatedly for similar tasks across one or 

more crowdsourcing projects.  

Given crowdsourcers’ interest in ensuring high data quality, increasing crowd experience 

via crowd reuse is generally considered desirable (Galloway et al., 2006; Gura, 2013). 

Highly experienced contributors may have greater knowledge of the task and domain 

than amateurs or novices. This leads to a preference for experienced contributors over 

novices or amateurs, which in turn influences the recruitment of crowd members and the 

design of crowdsourcing systems (Wiggins et al. 2011, Austen et al., 2016, Lukyanenko 

et al. 2014a). Crowdsourcers often seek to retain their existing crowd while pursuing 

avenues to increase contributors’ knowledge and participation (Nov et al., 2011; Rotman 

et al., 2012).  
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Data quality is traditionally measured by its intrinsic quality (e.g., accuracy), contextual 

quality (e.g., completeness, currency) and representational quality (e.g., 

comprehensibility) (Nelson, Todd, & Wixom, 2005; Wang & Strong, 1996). Research on 

the quality of crowdsourced data mainly focuses on the accuracy of data in attempts to 

address data quality issues (Budescu & Chen 2014; Wiggins, Newman, Stevenson, & 

Crowston 2011), paying less attention to other relevant dimensions of data quality such as 

completeness, comprehensibility and currency (Lukyanenko et al. 2016). However, these 

other dimensions are important as they determine a crowdsourcer’s ability to verify, 

reuse, or repurpose contributed data. 

The need to better understand the impact of repeated contributions by the same 

volunteers is important since the relationship between crowdsourcing expertise and 

quality is not a straightforward one. There are numerous reported examples where 

contributor experience and/or knowledge did not influence the accuracy of crowdsourced 

data (Austen et al. 2016; Kallimanis, Panitsa, & Dimopoulos 2017). e posit that quantity 

and diversity of contributions in a crowdsourcing project will decline when crowds are 

repeatedly exposed to the same project categories. This contention goes against the 

prevailing wisdom that more experience result in higher data quality, motivating the need 

to better understand how increased crowd knowledge gained through crowd reuse affects 

aspects of data quality beyond accuracy. Such insights will be useful to crowdsourcing 

organizations in their recruitment decisions (Ogunseye & Parsons 2017), and in the 

creation of more effective data collection designs sensitive to the nature of the crowds 

involved in their projects (see Lukyanenko, Parsons & Wiersma 2014a, 2014b). This is 

particularly important in crowdsourcing tasks centered on pooling complementary input 

from the crowd and fostering discoveries of new phenomena. Such crowdsourcing tasks 

include many tasks carried out in citizen science crowdsourcing – outsourcing scientific 

data collection and/or analysis to the general public using information technology (Lee, 

Crowston, Østerlund & Miller, 2017).  

Considering the effort involved in recruiting, training and retaining volunteers, crowd 

reuse is a common practice. Specific examples in the domain of citizen science include: 
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(1) the eteRNA project, in which ordinary citizens help design RNA sequences that fold 

into particular shapes previously unknown to expert scientists (Bohannon 2016, 

Anderson-Lee et al. 2016); (2) Galaxy Zoo, in which participants classify galaxies in 

images taken by the Hubble telescope, and in which non-expert contributors have been 

instrumental in the discovery of an important astronomical phenomenon (See 

Lukyanenko et al. 2016, Clery 2011, Cardamone et al. 2009); and (3) eBird (ebird.org), a 

project that relies on thousands of dedicated volunteers that report millions of monthly 

observations (Callaghan and Gawlik 2015). Indeed, GalaxyZoo shares a common 

platform – Zooniverse.org - with other similar projects (e.g., Planet Hunters, Asteroid 

Zoo, Old Weather, Snapshot Serengeti) allowing the same crowds to participate in a 

variety of other tasks. Likewise, companies like Crowdflower and Amazon Mechanical 

Turk provide access to a massive pool of workers available on demand including for 

repeated use in the same or similar crowd sourcing tasks (Peer, Vosgerau, & Acquisti 

2014; Paolacci & Chandler 2014).  

Crowd Reuse and Data Diversity 

In ongoing projects, committed contributors are learning and participating in a cycle 

within the project. The knowledge gained through participation (e.g., training, 

experience, self-study, or continued use of the crowdsourcing platform) affects future 

contributions in the same project (Jordan et al., 2011, Lukyanenko et al. 2014b). Further, 

crowds may self-aggregate by common interests and continually offer their services to 

projects they consider interesting (Gura, 2013; Newman et al., 2012). As considerable 

effort and cost might be needed to attract and retain volunteers, it is clear why 

crowdsourcers prefer a stable cohort of volunteers. Notwithstanding the benefits of crowd 

reuse, in this research we seek to examine potential limitations of relying on the same 

crowd, particularly for projects that engage crowds in discoveries or that evolve to 

encompass uses of data that were not anticipated when the project was designed and 

initiated. 
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Reuse of crowds in crowdsourcing increases task knowledge and manifests as experience 

and task expertise. For example, in an interview with Science, a molecular biologist – 

Arthur Olson – said of the success of ordinary citizens in predicting the 3D structure of 

protein through the FoldIt crowdsourcing platform: “I didn’t know …that this game 

would actually create experts” (Bohannon 2010). Although expertise is generally viewed 

as desirable, we examine whether increased experience (regardless of domain 

knowledge) makes crowds “stale”. We define crowd staleness as the extent to which a 

crowd provides less diverse data over time, as a consequence of increasing experience in 

reporting observations of the phenomena being studied. The theoretical basis for our 

claim is discussed next. 

Theoretical Underpinnings 

Classification (or categorization) is a fundamental human capability (Hoffman & 

Murphy, 2006). We learn by classification (Piaget & Cook, 1952) and continue to 

classify as a way to make efficient use of our cognitive resources (Goldstone & Kersten, 

2003; Lakoff, 1982). By classifying, we organize our existing knowledge about 

phenomena mainly through their similarities, which allows us to make predictions about 

new instances and events (Best et al., 2013). The literature on classification posits that, 

due to our tendency to classify, as we gain experience we learn to identify instances as 

members of classes by paying selective attention to only relevant features crucial for 

identifying them, while irrelevant features (those not useful for predicting class 

membership) are safely ignored. Although such “selective attention” engenders efficient 

learning, it leads to a learned inattention to features that are not diagnostic for a class in a 

particular context (Colner & Rehder 2009; Hoffman & Rehder 2010), resulting in a 

reduction in the diversity of features we attend to.  

The tendency toward selective attention and classification occurs naturally in humans as 

we acquire knowledge about entities in our world. In contrast, the absence of this 

tendency is “a developmental default” (Kloos & Sloutsky, 2008 p. 68; also see Gelman, 

1988). Experiments by Best et al. (2013), comparing the ability of infants and adults to 
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selectively attend to attributes of instances based on prior or current knowledge or 

experience, show that infants do not have the capacity for selective attention. Young 

children reason about classes by observing all of the features of individual instances. As 

they grow, they begin to pay selective attention to particular features determined to be 

relevant to the task at hand (Gelman & Markman, 1986; Plebanek & Sloutsky, 2017). 

Since knowledge naturally increases with experience, it is expected that contributors’ 

knowledge about a crowdsourcing task will increase as they gain experience (Harnad, 

2005). Experienced contributors are, therefore, expected to focus less on the non-

diagnostic attributes of instances of phenomena, but concentrate on diagnostic attributes 

(attributes they have learned from prior knowledge and experience that help identify the 

instance). With increasing experience and a corresponding increase in learned inattention, 

contributors will provide less data for each observation manifesting as reduced length of 

comments and a reduction in the number of attributes reported in comments. We 

hypothesize accordingly: 

H1. Data Quantity. The length of comments provided by contributors will 

decrease as they gain experience in participation in a crowdsourcing platform. 

H2. Data Diversity. The number of attributes used by contributors to describe a 

phenomenon will decrease as they gain experience in participation in a 

crowdsourcing platform. 

Empirical Evidence 

To test the research hypotheses, we examined the relationship between contributor 

experience and the quantity and diversity of data they provide. First, we tested the 

relationship between experience and the quantity of data provided in a crowdsourcing 

context. Second, we examined the relationship between contributor experience and the 

number of attributes they report.  

To increase the reliability and generalizability of our results, we analyzed data from two 

sources – both used in prior research and representing different crowdsourcing domains 

(He and McAuley 2016, Lukyanenko et al. 2017): (1) NLNature (www.nlnature.com); 
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and (2) Amazon.com. NLNature is an existing citizen science project to collect 

observations of flora and fauna in the Canadian province of Newfoundland and Labrador. 

Two of the authors participated in the design of the project. Participation was open to any 

resident of or visitor to the region, irrespective of level of expertise. The project 

encouraged participants to provide additional data in the comment section beyond the 

basic organism identification and description task they performed. These comments 

typically contained rich data to accompany an observation (see Table 1). Of 9148 

submissions made to the crowdsourcing platform in this period of time, we found 6447 

usable for this study as they were: (a) unique (not duplicates); and (b) were made by 

participants who contributed at least 30 times from January 1, 2014 to June 6 2017. We 

arbitrarily classified contributors who reported 30 or more observations in this period as 

“experienced” (in future work, we intend to vary the number of contributions considered 

as experienced to test whether our results are dependent on the chosen cutoff. In total, 39 

contributors provided the comments we analyzed in this paper. We use the number of 

contributions as a measure of experience.   

Review data from Amazon’s “baby products” category (see source details in He & 

McAuley 2016) was also analyzed using the same criteria discussed above for a period of 

3 years: 2010-2012. We found these years suitable for our analyses because before these 

years, none of the participants in the dataset had contributed 30 or more times. The 

dataset therefore self-mitigates the possibility that the reviewers were experienced 

reviewers in the domain on entering the time window we consider.  

Table 1. Sample contributions made to the citizen science project 

Source Identified Organism Comment 

NLNature Mink (Neovison 
vison)  

may have killed a snowshoe hare found nearby that didn't appear 
to eaten as a mammal such as a coyote would have 

Fox fox eating something buried under a small mound of grass 

 

Amazon.com Baby Toy This is colorful, soft, and makes lots of fun sounds babies love. I 
would recommend it to anyone for their baby. 
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The results of the analysis of the two datasets are shown in Figures 1 and 2. The figures 

reveal that, regardless of the initial level of knowledge of the contributor, and when (prior 

or during participation) the knowledge was acquired, there is a decrease in the length of 

comment as experience increases (by about one half word per comment for the NL 

Nature data and nearly six words per comment for the 2010 Amazon data). This is 

consistent with our theoretical arguments. Table 2 summarizes the results for the Amazon 

data for each of the three years. The results offer strong support for Hypothesis 1, based 

on data from two different crowdsourcing contexts.  

To examine the possibility that the number of properties used by contributors to describe 

a phenomenon decreases as contributors gain experience in participation, we analyzed 

data from Amazon.com. From the Amazon reviews, thirty pairs of comments were 

randomly selected, each pair from one contributor. 

	  
Figure 1: NLNature  

 

	  
Figure 2: Amazon Reviews 2010 [p<0.01] 

 (Similar	  results	  were	  obtained	  for	  years	  2011	  and	  2012)	  

 

Table 2: Summary of Results of Amazon Data Reviewed 

Year Participants (used) Comments (used) p-value R2  Mean comment 

length 

2010 1142 (143) 5173 (120) 9.15e-17 0.442 692 

2011 2094 (416) 11499 (270) 1.43e-14 0.198 671 

2012 3095 (906) 17904(690) 3.87-e55 0.299 615 



 Do crowds go stale? 
  

Workshop on Information Technology and Systems, Seoul, Korea 2017 9 

For the contributors selected, one comment was from the first three comments made in 

that year and another comment from their last three. Two of the authors independently 

coded each comment in this sample to determine the total number of attributes of the 

reported entity the comment contained. The third author resolved coding disagreements 

among the coders. The number of attributes is used as a measure of the diversity of the 

contributions. The result and summary statistics are shown in Figure 3 below. The 

regression analysis performed on the coded sample indicates that experience accounts for 

over 20% of the variance in the total number of attributes reported by crowds. 

Figure 3: Change in number of attributes with increasing experience 

    R-squared:                       0.215 

    P (F-statistic):                 0.000170 

 

The statistically significant negative slope confirms the decline in the reporting of 

attributes predicted in Hypothesis 2. 

Discussion 

In this paper, we seek to answer the question: does the diversity of crowdsourced data 

decline as crowds gain knowledge and experience? To answer this question, we provide 

arguments for how increasing crowd knowledge may lead to crowd staleness, 
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diminishing the tendency for crowd members to provide diverse data. To test the validity 

of our argument, we used data from two real world data sources to examine the diversity 

in data provided by a stable crowd over a period, investigating if the tendency of crowd 

members to provide diverse data declines with experience. Overall, we find that diversity, 

measured by the length of contributed comments and the number of attributes reported in 

comments, declines with the number of contributions made regardless of the level of 

prior knowledge of the contributor (i.e. whether they are experts or novices). Even though 

our research is preliminary, our results suggest that crowds can become stale, implying a 

need to continually recruit to make up for declining diversity due to staleness.  

Finally, while we do not test the relationship between crowd reuse and data accuracy, we 

believe crowd staleness could also negatively affect accuracy. Studies demonstrate that 

crowds seek to report data in the format they deem appropriate for the crowdsourcer, 

which may result in lower accuracy if people guess or select choices at random (Parsons 

et al. 2011, Lukyanenko et al. 2014a). For example, in biology-related projects, 

contributors may feel the need to report observed organisms as biological species, and 

thus may provide potentially inaccurate species identification labels. In contrast, most 

volunteers are able to describe the observed organisms using a variety of attributes or 

generic classes (e.g., bird), but if they perceive this to be of no use to the crowdsourcer 

(an awareness volunteers may reach with some experience with the project, see 

Lukyanenko et al. 2014a), they may avoid doing so to the detriment of observational 

accuracy and data diversity. Future work is needed to apply our theoretical propositions 

to the relationship between crowd reuse/crowd staleness and data accuracy. 

Conclusion  

Online crowdsourcing is an increasingly popular tool to collect data from diverse and 

distributed crowds. Notwithstanding the many advantages of crowdsourcing, we do not 

yet understand the most effective means of engaging crowds. In this paper, we challenge 

a common and tacit assumption that engaging the same volunteers – crowd reuse – brings 

only benefits to crowdsourcing projects. Indeed, as we show, as crowd members gain 
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experience, the diversity of data they provide may decline. As a starting point to 

understanding the issue of crowd staleness, this work has focused on the analyses of 

comment length and number of attributes included in a comment as surrogates for data 

diversity. Future studies are needed to more fully explore the characteristics of diversity 

that might be affected by crowd staleness and to propose and test measures to mitigate 

any loss of diversity. 
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