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Abstract 

Organizations and individuals who use crowdsourcing to collect data prefer 
knowledgeable contributors. They train recruited contributors, expecting them to provide 
better quality data than untrained contributors. However, selective attention theory 
suggests that, as people learn the characteristics of a thing, they focus on only those 
characteristics needed to identify the thing, ignoring others. In observational 
crowdsourcing, selective attention might reduce data diversity, limiting opportunities to 
repurpose and make discoveries from the data. We examine how training affects the 
diversity of data in a citizen science experiment. Contributors, divided into explicitly and 
implicitly trained groups and an untrained (control) group, reported artificial insect 
sightings in a simulated crowdsourcing task. We found that trained contributors reported 
less diverse data than untrained contributors, and explicit (rule-based) training resulted 
in less diverse data than implicit (exemplar-based) training. We conclude by discussing 
implications for designing observational crowdsourcing systems to promote data 
repurposability. 

Keywords: Data repurposability, information diversity, data-driven insight, crowdsourcing 
 

Introduction 

Crowdsourcing is a popular way of outsourcing tasks normally done by an organization or by professionals 
to an undefined, frequently online, group with varying levels of motivation and skill. One popular form of 
crowdsourcing is observational crowdsourcing – engaging people to provide data based on 
experiences and observations, such as the migratory patterns of wildlife (Lukyanenko and Parsons 2019) 
or the surveillance of potential disease outbreaks (Palmer et al. 2017).  

A key challenge in crowdsourcing is data quality. One popular strategy to ensure data quality in 
observational crowdsourcing is to recruit contributors who have the knowledge necessary to perform the 
data collection task (Surowiecki, 2005; Wiggins & He, 2016; Wiggins et al., 2011). When this is not possible 
(e.g., knowledgeable contributors are scarce or cannot be readily identified or targeted), an alternative 
strategy is to train potential contributors to attain the desired level of proficiency in the data reporting task 
(Yang et al. 2018). Training teaches contributors to provide data accurate and complete enough to be useful 
for the immediate purpose for which a data collection task was designed. 
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However, crowdsourced data are increasingly used in ways not envisioned when the data were collected. 
For example, Yelp review data, which is intended to guide shoppers and merchants on the weaknesses and 
strengths of services provided by businesses, has been used to identify restaurants with a high risk of health 
code violation and outbreaks of foodborne diseases (Harrison et al. 2014; Nsoesie et al. 2014; Schomberg 
et al. 2016). Similarly, mobile check-in data from Foursquare, an app used to share location information 
with friends and family, and Yelp reviews have been used to accurately predict business failures (Wang et 
al. 2015). Indeed, the rise of data science is largely predicated on repurposing data - using specific datasets 
in ways that go beyond the intended uses anticipated when the data collection process was designed. As 
repurposing is inherently unpredictable, this raises an important question about how to support 
repurposability when designing a data collection platform and process.  

One important characteristic that makes data repurposable is its diversity – the extent to which records 
in a data set contain information about different features of the observed phenomena (Ogunseye & Parsons 
2018). A data collection process that generates the same features for each new observation that is reported 
has low diversity. This is ideal when the features are those needed for the task for which the data collection 
process was designed. In contrast, a process that generates different features for each observation has high 
diversity. Such data might contain data useful for purposes not unanticipated at the time the data were 
collected. Diverse data, reflecting the different perspectives of contributors, can better meet the 
requirements of different users and different uses, even lead to discoveries (Ghasemaghaei & Calic, 2019; 
Parsons & Wand, 2014; Woodall, 2017).  

This research focuses on the effects of training on the diversity of data collected in observational 
crowdsourcing settings. Training helps contributors reliably provide data that meet anticipated uses (e.g., 
identifying a species of organism in a biology-focused citizen science application). However, we do not know 
how training affects the diversity of data collected in observational crowdsourcing. We conducted a lab 
experiment asking people to report sightings of artificial entities to test the effect of explicit (rule-based) 
training and implicit (exemplar-based) training on data diversity. We found that the diversity of data 
collected depends on whether and how we train crowd members, with untrained contributors providing the 
most diverse data and explicitly trained contributors providing the least diverse data. 

Next, we describe the theoretical foundations for our study and propose several hypotheses about the effects 
of training on diversity. We then describe our experiment, present the results, and discuss the implications 
of our findings. 

Theoretical Foundations 

Relevant Ontological Concepts  

To better understand the concept of data diversity, we consider how the real world is represented using 
data. Bunge’s ontology helps us understand the structure of the real world (Shanks et al. 2008; Wand and 
Weber 1990) and provides a useful framework with which to explore how contributed data represents the 
real world. Bunge’s ontology posits that the world is made up of things – unique and substantial individuals 
(Bunge, 1977. Things can be composed of other things (parts). Humans perceive the attributes of things and 
identify things using these attributes. We identify the Aedes aegypti mosquito, which transmits diseases 
such as dengue hemorrhagic fever, yellow fever, and Zika virus, using its attributes: “A. aegypti is easily 
recognized by the contrasting black and white rings on its legs and the lyre-shaped pattern of silver 
markings on the upper surface of the thorax” (Rozendaal et al. 1997, p. 16). The attributes of a thing can 
either be intrinsic, i.e., solely depending on the thing, or mutual, i.e., dependent upon more than one 
thing (Bunge 1977; Parsons and Wand 2000; Wand and Weber 1990). The black and white rings on the legs 
of the Aedes aegypti are an intrinsic attribute. In contrast, where the mosquito dwells (e.g., in a water 
storage tank) is a mutual attribute depending on two things: the mosquito and the tank. Mutual attributes 
inform us about the behavior, actions, and relationship between things (Kiwelekar and Joshi 2010; 
Rosemann and Green 2002; Wand et al. 1999). 
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Hypotheses Development  

How contributors learn 

During training, data contributors learn what attributes are essential for identifying a thing, that is, the 
diagnostic attributes of a thing. Contributors are expected to prioritize and direct their attention to these 
attributes when classifying the thing (Buschman and Miller 2007, p. 1860). If a contributor is not trained 
and has no prior knowledge of a thing, attention is driven by the salient attributes of the thing (Buschman 
& Miller, 2007), and by the cognitive effort required to search for attributes. Salient attributes are those 
that are prominent in a contributor’s visual space, such as the color, size, and shape of the parts of a thing. 
Salient attributes attract untrained observers’ attention more than they do trained observers (Theeuwes 
2010; Buschman and Miller 2007; Katsuki and Constantinidis 2014). For example, infants (six to eight 
months) and young children who lack prior knowledge tend to pay attention to more of a thing’s attributes 
than adults. Adults tend to pay attention to a few specific attributes of a thing needed to classify or identify 
the thing (Best et al. 2013; Gelman and Markman 1986; Kloos and Sloutsky 2008). 

Training leads to two common forms of knowledge: implicit and explicit knowledge (Berry and Dienes 1993; 
Sun et al. 2005; Vargios 2007). Implicit knowledge is experiential knowledge acquired by observing the 
structure or attributes of a thing, while explicit knowledge is acquired through instruction or rules and 
can be more readily verbalized than implicit knowledge (Leonardi and Bailey 2008)1. Acquiring implicit 
knowledge (implicit learning) occurs naturally and can be inadvertent as people gain experience in a task 
(Reber 1993; Taylor 2007). Teaching contributors by exposing them to a class of things allows contributors 
to infer the diagnostic attributes of the class. Implicitly trained contributors infer diagnostic attributes by 
observing the similarities in attributes between members of the class (Rosch 1973). When implicitly trained, 
contributors acquire their knowledge using bottom-up attentional allocation by attending to salient 
attributes of the thing they observe and thus learning the different possible diagnostic attributes of the thing 
(Ogunseye et al. 2017).  

Explicit knowledge is acquired through rule-based training (explicit training) – teaching contributors the 
rules needed to identify or categorize a thing. It is acquired consciously. By training contributors explicitly, 
the trainer provides the contributor with the rules that govern the identification of a thing and membership 
of a class (Jensen et al. 2017). These rules consist of a set of attributes, which are usually a proper subset of 
all the thing’s attributes. 

How contributors use knowledge 

When observing a thing, many attributes of both the thing and its surroundings compete for an observer’s 
attention. Having learned the diagnostic attributes of the thing, trained contributors will focus on those 
attributes that are needed to classify the thing, i.e., identify and make inferences about the thing (Bjorklund 
and Harnishfeger 1990). This helps manage limited cognitive resources, but in doing so, trained 
contributors will ignore attributes of the primary thing and any other things in their perceptual field that 
are irrelevant to classifying the thing (Hoffman and Rehder 2010; Prat-Ortega and de la Rocha 2018). This 
phenomenon is called selective attention: “the differential processing of simultaneous sources of 
information” (Johnston and Dark 1986, p. 44). The sources of information competing for an observer’s 
attention can be auditory, visual, or memorial (Plude et al. 1994). What aspects of these competing sources 
an observer pays attention to determine what they remember and report as data (Neill et al. 1995). 

When attributes that have been learned are used to guide attention, then attention is directed from the top-
down or is knowledge-driven (Katsuki and Constantinidis 2014). Top-down attention allocation is based on 
“volitional shifts of attention…derived from knowledge about the current task (e.g., finding your lost keys)” 
(Buschman and Miller 2007, p. 1860). However, when an observer has not previously committed the 
attributes of a thing to memory or has a first-time encounter with the thing, the attributes of the thing solely 
direct their attention, and their attention is allocated from the bottom-up or is stimulus-driven. In bottom-
up attentional allocation, “target stimuli ’pop out’ if they differ sufficiently from their background in terms 

 
1 We exclude a third type of knowledge – tacit knowledge, i.e. just unexplainably knowing how to do something, intuition – because it 
is difficult or impossible to teach tacit knowledge to other people (Leonardi and Bailey 2008). 
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of features such as color or orientation” (Katsuki & Constantinidis, 2014, p 509). Bottom-up attention is 
“automatic” and driven by “properties inherent in stimuli … (e.g., a flashing fire alarm)”.  

After training, an observer becomes more inclined to selectively attending to information as a coping 
mechanism to deal with the deluge of information sources competing for their attention (Richards & 
Turner, 2001). For example, infants cannot selectively attend to the attributes of things. Instead, their 
attention is driven by the salience of attributes. Adult humans decide which attributes of things to attend to 
based on their prior experience with similar stimuli, and they continue to value the usefulness of those 
attributes the more they are exposed to similar stimuli (Gazzaley and Nobre 2012). This infants-adults 
distinction thus exemplifies how humans allocate our attention to a thing when we lack prior knowledge 
and when we have prior knowledge about the thing (Keil 1989; Kloos and Sloutsky 2008). Trained 
contributors, like adult humans, will selectively attend to specific attributes of things, reporting only these 
attributes, whereas untrained contributors are less inclined to attend selectively to few attributes.  

Training works because it controls what we pay attention to about an observed thing and what we report 
about it. When trained explicitly, an observer’s view of a thing is bounded by the trainer’s view of the thing 
presented to them, but when trained implicitly, the observer’s view is limited to the available exemplars 
from which they have learned. Since what we selectively attend to is informed by how we have acquired 
knowledge, we, therefore, hypothesize about how selectively attending to attributes, based on implicit or 
explicit training, will affect contributors’ capacity to report diverse data, variations in the attributes of 
things, and quality data. 

Reporting Diverse Data 

Diverse data is data that represents the different attributes of a thing, and the different knowledge of data 
contributors about the thing. It has clear benefits for data repurposability and novel discoveries or insight. 
For example, eighty percent of surveyed organizations that accessed diverse data from different internal 
sources and other businesses gained more insights than organizations that used narrowly focused data from 
functional silos (Ransbotham and Kiron 2017). This ability for diverse data to be repurposed makes it more 
valuable for data-driven decision making than homogeneous data (Günther et al. 2017).  

Data diversity is a consequence of contributors being able to report data from their individual perspectives. 
Diversity is the total number of unique attributes reported about a thing (Ogunseye and Parsons, 2018). 
Data reported for an observation can be described in terms of attributes. Therefore, if A and B are 
observations that contributors provide about a particular observed thing, A is more diverse than B if A has 
more unique attributes about the phenomenon than B.  

Training determines the overall diversity of collected data in observational crowdsourcing. It prepares 
contributors to focus on some things (or some attributes of things) and ignore other things (or other 
attributes of these things) in a visual space. For example, training primes contributors to pay more attention 
to a primary thing, among other perceivable secondary things. When things for which contributors have 
received training are interacting with secondary things in their environment, trained contributors are 
expected to report fewer attributes of such secondary things or their interactions than untrained 
contributors. If these associations with secondary things become important for another use of the data, that 
knowledge would have been lost. Consider an observational crowdsourcing task focused on reporting the 
sighting of mosquitoes. Some mosquitoes are known to live in containers (Ritchie et al., 2003; Sprenger, 
1987). In a reporting task about mosquitoes, trained contributors might focus on identifying the thing, and 
not mention that it was found in a container. Given such data, repurposing the data for another use case 
where the data user needs to understand which mosquitos are likely Zika virus-transmitting types2 becomes 
infeasible without redoing the data collection task.  

The type of training contributors receive will also have an impact on the diversity of data they provide. 
Explicitly trained contributors would be less likely than implicitly trained contributors to report attributes 
of a primary thing and attributes of secondary things outside the finite attributes of the primary thing they 
have been taught to prioritize. We predict that implicitly trained contributors who have been repeatedly 
exposed to a primary thing during training will also pay more attention to the primary thing than to other 

 
2 The Aedes aegypti mosquito, which transmits the Zika virus, is a “container-breeding mosquito” (“Zika, Mosquitoes, and Standing 

Water | | Blogs | CDC” 2016) 
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things. We expect that implicitly trained contributors will attend to the intrinsic attributes of the primary 
thing. However, being more flexible in allocating attention than explicitly trained contributors, implicitly 
trained contributors will also pay more attention to the salient attributes of secondary things.  

Untrained contributors are not guided by prior knowledge. What they report is from bottom-up attentional 
allocation. They do not know if interactions and secondary things are unimportant for the crowdsourcing 
task. The salience of the attributes they observe directs their attention. Consequently, we expect untrained 
contributors to report more attributes than explicitly trained contributors who focus on a subset of the 
available attributes of a primary thing. Also, unlike implicitly trained contributors who will prioritize the 
attributes they have learned, untrained contributors will distribute their attention to all salient attributes 
of both primary and secondary things in their visual field. Therefore, we predict that untrained contributors 
will report more attributes in aggregate about the things in their visual field than explicitly or implicitly 
trained contributors.  

H1: Information diversity. Untrained contributors will report more diverse data than will implicitly 
trained contributors, who, in turn, will report more diverse data than will explicitly trained contributors.  

Reporting Attribute Variations  

The potential existence of instances whose attributes (e.g., their color, number, shape or size) deviate from 
the attributes to which trained contributors were exposed in training is most prevalent when crowdsourcing 
for information about living organisms or phenomena where human knowledge is limited. Not all available 
instances of an entity can be shown to potential contributors during training. Some of the attributes that 
contributors encounter in a crowdsourcing task may be new to only the contributor. However, in some 
cases, contributors may encounter attributes that are new both to themselves and to the data users. For 
instance, while classifying galaxies from images, a data contributor to the GalaxyZoo project – Hanny van 
Arkel – helped identify a “brand new type of astronomical object previously unknown to scientists” because 
she flagged some of its attributes as atypical; “it appeared as a blue squiggle” (“Hanny’s Voorwerp – History 
of a Mystery” 2013). How training affects a contributor’s ability to report attributes they encounter that are 
new to them and may lead to the discovery of new things or new states of old things is pertinent in 
observational crowdsourcing where discoveries are possible and welcomed (Ogunseye and Parsons 2016).  

Training can limit contributors’ reporting of variations to intrinsic attributes of primary things for which 
they learned not to attend to (Hoffman and Rehder 2010). Learning to ignore some attributes (a 
consequence of selective attention) leads to inattentional blindness - when a contributor fails to see some 
visible attributes of an entity in their visual field because they are attending to other attributes of the entity 
(Simons, 2000). On the one hand, we expect contributors attending to some attributes to be blind to 
variations in other attributes when the varying attributes have no bearing on the task (Simons and 
Ambinder 2005; Simons and Rensink 2005). On the other hand, we expect contributors trained to 
selectively attend to diagnostic attributes to report more variations affecting these diagnostic attributes 
when they occur.  

Knowledgeable contributors will be more resistant to learning something new (Plebanek & Sloutsky, 2017), 
impeding their ability to report attributes they have not observed before. This will, however, differ by the 
type of knowledge a contributor has. Even though things can exhibit mutual and intrinsic attributes that 
are new to a contributor, we restrict our notion of attribute variations to significant additive differences in 
the intrinsic attributes of a thing compared to the instances introduced to the contributor during training. 
Explicitly trained contributors are expected to report fewer occurrences of intrinsic attribute variations than 
implicitly trained contributors. This is because implicitly trained contributors have attended to more 
intrinsic attributes while developing their classification rules (Vargios 2007), even those not required to 
classify the thing, and should be more sensitive to manifestations of attributes they have not seen before.  

Every attribute of an unknown thing is new to an untrained contributor. Untrained contributors are 
therefore expected to report the attributes they observe driven by attribute salience. However, because their 
attention is more dispersed across their visual field, their inattentional blindness would be due to allocating 
their attention to competing salient attributes, and not due to a conscious focus on only known attributes. 
If the attribute is salient, the chance that an untrained contributor will report it is thus high. A trained 
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contributor may still ignore an attribute variation, even if it is salient. Again, consider our mosquito 
example: assume the key diagnostic attribute of the Aedes aegypti is black and white rings on its legs. A 
trained contributor is more likely to report an instance of a mosquito with pale pink (or light gray) and black 
rings on its legs, mentioning the new color than to report the presence of an extra wing if they have learned 
that the number of wings is not diagnostic, even if the wings have salient attributes. An untrained 
contributor would more likely report the increase in wings than report the variation in ring color, assuming 
the latter attributes are not salient but are diagnostic. 

Untrained contributors are expected to report fewer intrinsic attribute variations than implicitly trained 
contributors. However, we expect untrained contributors to report more attribute variations than explicitly 
trained contributors, especially if the new attributes do not affect the classification task. 

H2: Attribute variations. Explicitly trained contributors will report fewer attribute variations of 
observed instances than will untrained contributors who, in turn, will report fewer attribute variations 
than implicitly trained contributors 

Reporting Quality Data 

Contributed data should represent the state of an observed world at a given time and should help 
information users reproduce that state whenever necessary. In the literature and practice, data quality is 
judged by the extent to which the data fit intended use (Sadiq and Indulska 2017; Wang and Strong 1996). 
Data users worry about possible deficiencies in their data (Forbes, 2018; Weigelhofer & Pölz, 2016). The 
main deficiencies data users concern themselves about are inaccuracy, i.e., when data represents a “real-
world state different from the one that should have been represented” (Wand and Wang 1996, p. 93), and 
to a lesser extent, incompleteness – when some “lawful states of the real-world system [are not] represented 
by the [data]” (Wand and Wang 1996, p. 91; Wang and Strong 1996).  

When data contain all the attributes of a thing that are relevant to a specific context of use or view of the 
thing, the data is said to be complete (Nelson et al. 2005; Wixom and Todd 2005). If the use case or view of 
the thing changes (i.e., data is repurposed), the data may no longer be complete, prior classifications may 
no longer be accurate. For example, based on a view of what constitutes a planet, Pluto was previously 
classified as one of the nine planets in our solar system. When the planet class was redefined, the previously 
sufficient attributes of Pluto became incomplete. It would now be inaccurate to classify Pluto as a planet in 
our solar system. What constitutes accurate and complete information (quality data) can change when the 
use of the data changes (Ogunseye and Parsons 2018). 

Unlike the concept of data diversity, information quality is tied to an imminent use of the data. Diversity, 
on the other hand, accommodates repurposability, discoveries, and unanticipated uses. To illustrate the 
difference between data quality and diversity, consider a case where a contributor C1 reports Attributes 1 
and 2 about a thing in the real world (RW), and if these attributes are considered sufficient for the task at 
hand by information user U1, the information is complete according to the traditional definition of 
completeness and assuming accurate operationalization of the complete attributes, the data is considered 
high quality (see Figure 1a). However, if Attribute 4 of the thing becomes relevant in the future, a new 
information-gathering process would have to be initiated, or novel insights may be forfeited (Bonter and 
Cooper 2012). Figure 1b shows that if information diversity is encouraged, such that contributors C1 and 
C2 provide different perspectives to the information source, consumers U1 and U2 can derive multiple views 
from the data. 
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Figure 1a: Data Quality and 
Repurposability 

Figure 1b: Data Diversity and 
Repurposability 

 
We discuss how training impacts data quality in terms of data quality deficiencies: inaccuracy and 
incompleteness. Our view of incompleteness focuses on the completeness of attributes rather than the 
completeness of things. From this view, we agree with Wand and Wang (1996) that identification made 
from incomplete attributes can lead to inaccuracy. The complete attributes required to identify a thing are 
the diagnostic attributes of the thing. Accuracy, in the context of observing and reporting phenomena, 
depends on the ability of contributors to map the complete attributes (diagnostic attributes) in data to the 
correct real-world thing.  
 
The diagnostic attributes of things can include both their mutual attributes and their intrinsic attributes. 
Even though mutual attributes may provide additional criteria for identifying a thing, we assume the mutual 
attributes of a thing are not mandatory attributes but complementary attributes, useful for validation of 
accuracy. Therefore, only the intrinsic attributes of the thing are diagnostic. For instance, Aedes aegypti 
mosquitoes are expected to breed in containers and feed in the morning and at night (Rozendaal et al. 1997). 
However, violating these mutual attribute requirements should not invalidate the mosquito’s class.  

In cases where diagnostic attributes consist of salient attributes of a thing, we predict that even though 
implicitly trained contributors formulate inclusion rules themselves, they would report a similar number of 
diagnostic attributes, i.e., attributes that constitute inclusion rules, about an observed thing as the explicitly 
trained. In the same vein, untrained contributors are expected to apply a stimuli-driven approach to 
attention allocation without any prior knowledge of the diagnostic attributes (Itti and Koch 2001; Niebur 
and Koch 1996; Wolfe 1994). When most diagnostic attributes are salient, untrained contributors are 
therefore expected to also report similar numbers of diagnostic attributes as the implicitly and explicitly 
trained contributors. There will be no significant difference in the number of diagnostic attributes reported 
by untrained, implicitly trained, and explicitly trained contributors.  

However, when the crowdsourcing task favors precision and classification accuracy, we expect explicitly 
trained contributors to be better at accurately identifying entities than implicitly trained contributors 
because explicitly trained contributors have learned clearly defined rules while implicitly trained 
contributors had to derive an inclusion rule by observing the salient attributes of every example they were 
presented with. Also, we expect that untrained contributors would not be able to classify the entity at the 
level of trained contributors. Untrained contributors do not know the specific class of the thing and would 
report basic (general) categories of the entity.  

H3: Information quality. Explicitly trained contributors will more accurately classify a primary thing 
than implicitly trained and untrained contributors, but all groups will report a similar number of 
diagnostic attributes of the primary thing. 

Experimental Design 

We designed an experiment in the context of citizen science, a type of crowdsourcing in which citizens 
contribute to data collection and/or analysis while gaining scientific knowledge through their involvement 
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in the research. Citizen science projects often seek knowledgeable contributors (Wiggins et al. 2011). Many 
citizen science projects are interested in discoveries (Lukyanenko, Parsons, et al., 2019). Citizen science is, 
therefore, a suitable context to test the impact of training on information diversity. 

Following Kloos and Sloutsky’s (2008) artificial stimuli, we created two classes of artificial insects: tyrans 
and nontyrans. We used novel artificial creatures to limit the effect of contributor prior knowledge on the 
study. The artificial insects are the primary entities of interest in our study. We defined tyran as a class 
(species) of artificial insects whose members meet a classification rule (a set of attributes and values of these 
attributes). Similar artificial stimuli that do not meet this classification rule are nontyrans. The 
classification rule consists of five requirements: tyrans have (1) a short tail, (2) light blue bodies, (3) two 
or three buttons on their light blue bodies, (4) blue wings, and (5) either one or two rings on each blue 
wing. The criteria for a primary entity to be classified as a nontyran is that it does not possess all the 
attributes stated in the classification rule. Figure 2 shows a sample tyran and a sample nontyran used in the 
experiment. 

The experiment consists of twenty images, each presented on a slide. Sixteen slides (the test images) are a 
mixture of tyrans and nontyrans. Four images containing catch items were placed intermittently among the 
test images to check whether the participants paid attention to the task. The catch items were differently 
shaped/colored stimuli that were not insects, and each participant was expected to report these stimuli 
correctly. The slides were presented in a nonrandomized order to all three groups, with image 5, 10, 15, and 
20 containing catch items not related to the actual task. Each image has one primary entity but may not 
include secondary entities. Secondary entities presented in the images are everyday things such as birds, 
insects, and fences.  

To test the reporting of attribute variations of the primary entities, six of the sixteen test images included 
variations of intrinsic attributes of primary entities relative to rules and training examples, i.e., 3 
manipulations for tyrans and another 3 for nontyrans. For example, some primary entities had an increase 
in the number of a part of the thing (e.g., extra antennae), or different color parts, unlike the samples 
presented to participants during training.  

We pretested the experimental materials with 12 ecology students who are familiar with observing and 
reporting organisms in the field. For the pretest, our goal was to examine the suitability of prompts to elicit 
unbiased responses from contributors. Also, we sought to test the ease with which implicit learners can 
decipher the inclusion rules from the samples they are presented during training, and the ease with which 
explicit learners can learn our classification rules. We tested participants using a 2-attribute inclusion rule 
and a 5-attribute inclusion rule. We also provided testers with stimuli with 2 attributes in common and 
stimuli with 5 attributes in common to see how well they decipher the inclusion rule. We displayed images 
of the entities in separate PowerPoint slides.  

 

 

Tyran. It follows the classification rule. 
Nontyran because it has three rings on each wing. The 

number of legs is not diagnostic. 

Figure 2. Sample Tyran and Nontyran Images 

 

Sources of Nondiagnostic 

Information 

Secondary entities 

Antennae 

Blue wings 

Rings 

Tail 

Buttons 

Light blue body 

Sources of Diagnostic 
Information 
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From the pretest, we found that asking contributors a nonleading question, i.e., “what do you see?”3 was 
less biasing than asking them to identify the entity they observed or to report their sighting. Also, 
participants who used the 5-attribute inclusion rule did equally well as those who used the 2-attribute 
inclusion rule. However, in the feedback we received, participants in the 2-attribute inclusion rule condition 
complained that the 2-attribute inclusion rule made the task too easy. We conducted another pretest to 
examine the effect of the changes made based on our initial pretest. 

Fifteen business students participated in the second pretest, which identified the appropriate duration of 
the reporting tasks for each image to be 40 seconds and confirmed the effectiveness of the changes made 
from the first pretest. These changes include the use of 5-attribute stimuli and the “what do you see?” 
prompt for the main experiment. 

Task 

We asked participants to imagine that designers of a game, similar to Pokémon Go, required their assistance 
in improving the design of an aspect of the game. The game requires players to observe artificial insects. 
Specific insects called Tyrans are harmful and can kill a player’s character, while other insects called 
nontyrans, with some features similar to the tyrans but dissimilar in other features, can provide energy to 
a player’s character in the game. The designers, therefore, needed to test if the participants can report data 
about these insects when observed to help improve their game. The participants were further informed that 
the goal of the experiment is to examine how people report the things they observe.  

Participants were issued data entry booklets in which to write down their observations. For each image, 
each numbered page of the booklet required participants to record their observation about a 
correspondingly numbered image slide that we project. The prompt on each page of the booklet was, “what 
do you see?” Participants were also required to complete a demographic section after the study. 

Participants 

The 93 students who participated in this experiment were undergraduate students of Memorial University 
of Newfoundland. Students participated for course credit, for donations to their class graduation, and for 
the chance to win a bookstore gift card. After screening for completeness and the attentiveness of the 
contributor using the embedded catch items, responses from 84 participants, 28 participants per group was 
analyzed. Submissions from nine participants were excluded because of illegible writing, failure to report 
at least 3 out of 4 catch items correctly, and incomplete reports; 36 of the participants identified as male, 
and 48 as female. 

We randomly assigned participants to three groups: (1) Explicitly Trained, (2) Implicitly Trained, and (3) 
Untrained. Members of the explicitly trained group were taught the classification rule introduced above for 
classifying the primary entities as tyrans or nontyrans. To increase their familiarity with the task, 
participants in the explicitly trained group were also shown five sample tyrans sufficient to decipher the 
classification rule, asked if they were tyrans, and given feedback on why these entities qualified as tyrans. 
We only showed participants images of tyrans because there are infinitely many ways the attributes of a 
primary entity may violate the classification rules (here we also follow Kloos and Sloutsky (2008)). We 
briefed participants in the implicitly trained group on the task they will perform and showed them the same 
five target stimuli used to teach the explicitly trained group, one at a time, to allow them to elicit 
classification criteria. The participants were allowed to study each image; however, we did not provide 
explicit rules to members of this group, nor did we give them feedback on their ability to determine whether 
a thing is a tyran or not. Members of the untrained group were not shown any sample images. However, 
like the other groups, members of the untrained group were informed that we were interested in examining 
how people report information. 

 
3 This is the prompt used by eBird, a popular citizen science platform (www.ebird.org). 



 How Training Affects the Diversity of Crowdsourced Data 
  

 Forty-First International Conference on Information Systems, India 2020
 10 

Measures 

We developed a coding scheme that accounts for attributes of the primary entities and attributes of other 
secondary entities reported by participants. Two of the authors participated in coding the first ten reports 
to establish consensus and conformance with the coding scheme. The first author coded the remaining 
reports, while the other authors reviewed the coded data at different stages of the coding process. The 
variables coded for are presented in Table 1.  

 Codes Description 

Classification Accuracy The accuracy of identification of the primary entity as a tyran or nontyran 

*Information Diversity Information diversity is the total of all attributes reported about the entity. It is the 
sum of all intrinsic and mutual attributes of all the entities presented 

Diagnostic Attributes The number of primary entity diagnostic attributes reported 

Intrinsic Attribute 1 The number of primary entity intrinsic attributes reported, i.e., attributes that 
depend on the primary entity only  

Mutual Attribute 1 The number of primary entity mutual attributes (attributes that show an interaction 
between the primary entities and secondary entities)  

Intrinsic Attribute 2 The number of secondary entity intrinsic attributes reported, i.e., attributes that 
depend on the secondary entity only  

Mutual Attribute 2 The number of secondary entity mutual attributes (attributes that show an 
interaction between the secondary entities and the primary entity or other entities)  

Attribute Variations The number of reported new intrinsic attributes (attributes that vary from the ones 
presented in training) 

Diagnostic Variations The number of reported variations in intrinsic attributes of a primary entity that 
affect diagnostic parts of the entity. E.g., the wings are supposed to be blue. A new 
instance may have shorter than usual blue wings 

Nondiagnostic Variations The number of reported variations of nondiagnostic attributes (i.e., different from 
those seen in training). E.g., extra antennae. Antennae are not diagnostic 

Secondary Entities The number of secondary entities reported 

*derived from coding intrinsic and mutual attributes of entities 

Table 1. Variables Coded in the Contributed Data 

Results  

We used one-way analysis of variance (ANOVA) and Tukey’s HSD4 test for post-hoc comparison of the 
group averages (excluding the catch item images used for screening purposes only) to compare the variables 
described in Table 1 above, across the groups. We also used chi-square to test the difference in classification 
accuracy between the groups. We present the results of these analyses on the effect of training on our 
dependent variables: the reporting of diverse data, the reporting of attribute variations, and the reporting 
of quality data.  

 
4 Tukey’s Honestly Significant Difference (Tukey’s HSD) corrects for multiple comparisons (Homack, 2001) 
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Diverse Data 

Information diversity is significantly different across groups, with 𝐹(2,81) = 85.967, 𝑝 < 0.001. Table 2 
shows that for information diversity, the group mean of the untrained group is significantly higher than 
those of the explicitly trained and implicitly trained groups. Also, the group average of the implicitly trained 
group is significantly greater than that of the explicitly trained group. This supports Hypothesis 1. 

Information 
Diversity  

A B mean(A) mean(B) Mean 
Diff. 

Std. 
Err 

T p-value 𝜼𝟐 

E I 4.070 7.433 -3.363 0.383 -8.777 0.001 0.07
9 

E U 4.070 8.984 -4.914 0.383 -
12.825 

0.001 0.155 

I U 7.433 8.984 -1.551 0.383 -4.048 0.001 0.01
8 

   E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 

Table 2. Results for the Effect of Training on Information Diversity 

To better understand the results, we looked at the effect of training on the variables that make up the 
information diversity aggregate (Table 3). 

 A B mean(A) mean(B) Mean 
Diff. 

Std. 
Err 

T p-
value 

𝜼𝟐 

Intrinsic Attribute 1 E I 2.217 4.621 -2.403 0.337 -7.136 0.0010 0.054 
E U 2.217 3.404 -1.187 0.337 -3.524 0.0012 0.014 
I U 4.621 3.404 1.217 0.337 3.612 0.0010 0.014 

Mutual Attribute 1 E I 0.725 0.748 -0.022 0.171 -0.131 0.900 0.000 
E U 0.725 2.255 -1.529 0.171 -8.940 0.001 0.082 
I U 0.748 2.255 -1.507 0.171 -8.810 0.001 0.080 

Intrinsic Attribute 2 E I 0.246 1.261 -1.016 0.162 -6.274 0.001 0.042 

E U 0.246 1.730 -1.484 0.162 -9.170 0.001 0.086 

I U 1.261 1.730 -0.469 0.162 -2.896 0.011 0.009 

Mutual Attribute 2 E I 0.882 0.804 0.078 0.164 0.477 0.8852 0.000 

E U 0.882 1.596 -0.714 0.164 -4.357 0.0010 0.021 
I U 0.804 1.596 -0.792 0.164 -4.834 0.0010 0.025 

E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 

Table 3. Results for the Effect of Training on Attribute Types 

Table 3 shows that the mean value of the primary entities’ intrinsic attributes (Intrinsic Attribute 1) is 
significantly different across the groups, with F (2,1341) = 60.405, 𝑝 = 0.001. The average number of 
intrinsic attributes reported for the primary entity is highest for the implicitly trained group and lowest for 
the explicitly trained group. For the mutual attributes of the primary entities (Mutual Attributes 1), the 
group means of the explicitly trained and implicitly trained groups are significantly lower than that of the 
untrained group. However, there is no difference between the explicitly trained and implicitly trained 
groups. Untrained contributors were better than trained contributors at reporting the mutual attributes of 
the primary entities, but implicitly trained contributors reported more intrinsic attributes than explicitly 
trained and untrained contributors. 

For images that contained secondary entities, the untrained group reported more intrinsic attributes of 
secondary entities (Intrinsic Attribute 2) than the trained contributors. The explicitly trained group 
reported the fewest intrinsic attributes. The mutual attributes of secondary entities (Mutual Attribute 2) 
were significantly different across groups. The mean for the untrained group was higher than those of the 
explicitly trained and implicitly trained groups; however, there is no significant difference between the 
explicitly trained and implicitly trained groups.  

Attribute Variations 

From the ANOVA results, the average number of attribute variations reported was different across the 
groups (𝐹(2,1341) = 8.964, 𝑝 = 0.000) at the 5% level of significance. The results of the post hoc tests 
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presented in Table 4 also show that implicitly trained contributors do better than other groups at reporting 
variations in attributes, and there is no difference between the number of attribute variations reported by 
the untrained contributors and the explicitly trained contributors. This result support hypothesis 2. 

 A B mean(A) mean(B) Mean 
Diff. 

Std. 
Err 

T p-value 𝜼𝟐 

Attribute 
Variations 

E I 0.123 0.3795 -0.257 0.07 -3.666 0.001 0.015 
E U 0.123 0.123 0.000 0.07 0.000 0.900 0.000 
I U 0.380 0.123 0.257 0.07 3.666 0.001 0.015 

   E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 

Table 4. Results for the Reporting of Attribute Variations  

Breaking the number of variations in attributes reported for the observed instances of the primary entity 
into diagnostic attributes variations (Diagnostic Variations) and nondiagnostic attributes variations 
(Nondiagnostic Variations), we found that the groups were not significantly different at reporting attribute 
variations that affected classification. However, implicitly trained contributors were better at reporting 
attribute variations on nondiagnostic attributes, while untrained and explicitly trained contributors 
reported similar numbers of variations of nondiagnostic attributes. The results are presented in Table 5. 

 A B mean(A) mean(B) Mean 
Diff. 

Std. 
Err 

T p-
value 

𝜼𝟐 

Diagnostic 
Variations  

E I 0.112 0.101 0.011 0.044 0.252 0.900 0.000 
E U 0.112 0.056 0.056 0.044 1.261 0.419 0.002 

I U 0.101 0.056 0.045 0.044 1.008 0.664 0.001 

Nondiagnostic 
Variations 

E I 0.011 0.280 -0.268 0.052 -5.150 0.001 0.029 

E U 0.011 0.067 -0.056 0.052 -1.073 0.610 0.001 

I U 0.280 0.067 0.212 0.052 4.077 0.001 0.018 

   E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 

Table 5. Results for the Reporting of Variations of Diagnostic and Nondiagnostic Attributes 

Quality Data 

We tested for the effect of training on classification accuracy – the ability of contributors to correctly identify 
the primary entity as a tyran or a nontyran. We expected that untrained contributors would not be able to 
classify the entity and would instead report its basic categories, e.g., bug or insect, and describe the entity 
by its attributes. We, therefore, excluded untrained contributors from the test for classification accuracy. 

Identification or classification accuracy is valued as one or zero for each target entity presented, depending 
on whether the contributor correctly identifies the target entity as either a tyran or a nontyran (1) or not 
(0). The result is presented in Table 6 below. 

Classification Accuracy 
Group Incorrect Correct Total 

E 62 (13.8%) 386 (86.2%) 448(100%) 
I 162(36.2%) 286(63.8%) 448(100%) 

Total 224 672 895 

E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 

Table 6. Differences in Accuracy for Explicitly and Implicitly Trained Groups 

Following the result of the classification accuracy test, we then compared the extent to which trained and 
untrained contributors reported diagnostic attributes of the target entity. We found that the number of 
diagnostic attributes reported is not significantly different across groups, with F (2,1341) = 0.92, p = 0.399 
at the 5% level of significance. Post-hoc analysis also reveals significant similarity between all the number 
of diagnostic attributes reported by all groups (see Table 7). 
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 A B mean(A) mean(B) Mean 
Diff. 

Std. Err T p-value 𝜼𝟐 

Diagnostic 
Attributes 

E I 1.514 1.440 0.074 0.183 0.407 0.900 0.000 
E U 1.514 1.272 0.242 0.183 1.324 0.383 0.002 
I U 1.440 1.272 0.167 0.183 0.917 0.718 0.001 

E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 

Table 7. Results for the Reporting of Diagnostic Attributes (Completeness) 

These results support hypothesis 3. 

Manipulation Check 

To confirm that the trained contributors exhibited selective attention to the primary entity and its 
attributes, and a learned inattention to other entities, we compared their reporting of the presence of 
secondary entities. Since secondary entities are familiar entities, we examined the degree to which each 
group reported the presence of these entities as proof for whether they paid selective attention to primary 
entities. Applying One-way ANOVA to the data of images that included secondary entities, we found that 
untrained contributors reported the occurrence of secondary entities more often than trained contributors 
(Table 8). 

 A B mean(A) mean(B) Mean 
Diff. 

Std. 
Err 

T p-
value 

𝜼𝟐 

Secondary 
Entities 

E I 1.036 1.544 −0.508 0.109 −4.674 0.001 0.029 

E U 1.036 2.289 −1.253 0.109 −11.521 0.001 0.154 

I U 1.544 2.289 −0.745 0.109 −6.847 0.001 0.060 

   E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 

Table 8. Differences in the Reporting of Secondary Entities 

Discussion 

Contributors to observational crowdsourcing projects are frequently trained based on the assumption that 
knowledgeable contributors will report better data than untrained contributors. However, our study raises 
important questions about the validity of this assumption. We found through our experiment that training 
affects contributors’ ability to report diverse data. Untrained contributors report more diverse data than 
trained contributors. Trained and untrained contributors were equally capable of reporting variations to 
diagnostic attributes (the attributes essential for classification). However, implicitly trained contributors 
reported more variations to nondiagnostic attributes than explicitly trained and untrained contributors. 
Also, both trained and untrained contributors can report diagnostic attributes that will lead to accurate 
classification, but trained contributors, particularly explicitly trained contributors, are better at accurately 
classifying things (see the summary of results in Table 9). 

Our results suggest that untrained contributors might be best suited to such situations where data needs to 
be collected about fleeting phenomena, and data users want to capture as much detail (i.e., diversity of 
perspectives) as they can the first time. Also, using untrained contributors will not lead to loss of 
information quality when data users can use machine learning (Lukyanenko et al. 2019) or even a second 
layer of analyses by experts (Brynjolfsson et al. 2015; Lukyanenko et al. 2019) to determine entities from 
reported attributes. Restricting participation to knowledgeable contributors or insisting on training 
contributors is unnecessary in many observational crowdsourcing cases and would be limiting the 
inclusiveness of projects, potentially depriving both participants and data users of knowledge that emerges 
from a crowdsourcing endeavor. 

Furthermore, diagnostic attribute variations can indicate a new variant of an entity, a new species, or a new 
stage of the development of an entity. All these may portend useful insight that can lead to discoveries about 
a thing (Mahner and Bunge 1997). If the goal of an observational crowdsourcing task includes making 
discoveries by collecting reports of variations in diagnostic attributes, then training offers no benefits to 
observational crowdsourcing projects. However, data users may also be interested in nondiagnostic 
attribute variations, and in such instances, it makes sense to train contributors implicitly but not explicitly. 
Overall, our results suggest no need to train crowds because of a concern for data quality. Given that 
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repurposable data are more variable than homogeneous, streamlined data (Günther et al. 2017), training 
contributors negatively impact their ability to provide data that can be flexibly used in new contexts to drive 
insightful decision-making (Ogunseye & Parsons 2018).  

This research has broad implications for crowdsourcing systems that explicitly train their contributors and 
crowdsourcing systems that inadvertently train crowds by allowing the same contributors to participate in 
the same task over and over again – the business model of crowd-hiring platforms like Amazon Mechanical 
Turk (Ogunseye et al. 2017). It can serve as a guide to system designers and decision-makers, helping to 
ensure that their decision to train contributors aligns with the goals of their projects. The research also 
contributes to theory by highlighting how indiscriminate crowd-reuse in online review systems and 
crowdsourcing platforms can affect the value of data collected through these systems.  

At the same time, this study answers the call for more research that guide the designs of information 
systems that augment human intelligence and mitigate human limitations (Jain et al. 2018). The designs of 
observational crowdsourcing systems, whether for tracking disease outbreaks like COVID 19 and SARS or 
collecting information about flora and fauna in a region of North America, need to mitigate the human 
tendency to focus on known uses of data and potentially leave out valuable information. This study can 
provide prescriptive guidance to practitioners and researchers on how to compose their crowds or design 
their crowd-facing systems to mitigate the negative consequences of learning on the data they collect. In 
the psychology and cognitive science domains, this research increases our knowledge of how selective 
attention affects information people produce and not just the information they consume. 

There are several limitations to the generalizability of our findings. First, in our experiment, we used five 
exemplars in the implicit training condition. The number of exemplars may not be adequate to learn all the 
rules for classifying entities and may be too many in some cases. Second, we assume organizations and 
individuals that own and use observational crowdsourcing platforms can classify entities from collected 
data containing attributes and basic classes. However, this might not be easy or realistic in every case. In 
this study, we can understand the descriptions provided by untrained contributors about the entities, and 
the images used in the experiment are accessible to us for confirmation. In some real-world scenarios, data 
users might not understand descriptions provided by untrained contributors in the field.  

Hypotheses Comments on Findings Supported 

H1: Information diversity. Untrained 
contributors>implicitly trained 
contributors,>explicitly trained contributors.  

Untrained contributors reported more diverse 
data than trained contributors.  

Yes 

H2: Attribute variations. Explicitly trained 
contributors < untrained contributors <implicitly 
trained contributors 

When the varying attributes are diagnostic, 
untrained ≡ trained. For all variations, 
implicitly trained contributors > explicitly 
trained and untrained contributors. 

Partially 

H3: Information quality. (classification 
accuracy) Explicitly trained contributors > 
implicitly trained > untrained contributors; 
(completeness) untrained ≡ trained 

True in all cases Yes 

Table 9: Summary of Hypotheses and Findings 

Conclusion 

Users of observational crowdsourcing who train their crowds believe trained contributors will provide 
better quality data than untrained contributors. Even though training may increase classification accuracy 
in crowdsourced data, this research shows that training reduces data diversity, with potentially negative 
consequences for the repurposability of collected data.  

Both untrained and trained contributors can adequately report variations to diagnostic attributes of 
different instances of a thing, which may lead to discoveries. However, if we must train our crowds, it may 
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be better to employ implicit training than explicit training. Nonetheless, there are scenarios where precision 
and classification are of absolute necessity, and at these times, explicit rule-based training would be ideal. 

Moreover, data requirements can change at several stages of a decision-making process - during data 
collection or even after the initial analytics results come in. Because we do not always know precisely how 
our crowdsourced data will be used, and if the information we require from data will change, there is a need 
to collect data that can accommodate known and emergent uses. The result of this study suggests that the 
choice to train our crowds would, therefore, depend on whether we need repurposable data. Other factors 
we need to consider are how much value we place on the inclusiveness of our project and whether the data 
that untrained contributors can provide would be usable in the specific context of our projects. But 
knowledgeable contributors are not required to acquire quality data. 

Further study is necessary to test the effect of selective attention in the field to aid our research’s 
generalizability. It would also be useful to understand how to mitigate the impact of selective attention on 
collected data through task and system designs. Beyond the crowdsourcing space, we will continue to work 
on guiding the collection of repurposable data. 
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