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ABSTRACT 

Users of crowdsourced data expect that knowledge of the 

domain of a data crowdsourcing task will positively affect 

the data that their contributors provide, so they train 

potential participants on the crowdsourcing task to be 

performed. We carried out an experiment to test how 

training affects data quality and data repurposability – the 

capacity for data to flexibly accommodate both 

anticipated and unanticipated uses. Eighty-four 

contributors trained explicitly (using rules), implicitly 

(using exemplars), and untrained, report the sighting of 

artificial insects and other entities in a simulated citizen 

science project. We find that there are no information 

quality or data repurposability advantages to training 

contributors. Trained contributors reported fewer 

differentiating attributes of entities and fewer total 

attributes of the entities they observed. Trained 

contributors are therefore less likely to report data that 

can lead to discoveries. We discuss the implications of 

our findings to the design of inclusive data crowdsourcing 

systems. 
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INTRODUCTION 

Crowdsourcing is a popular way of outsourcing tasks, 

normally done by an organization or by professionals, to 

an undefined, frequently online, group with varying levels 

of motivation and skill. One form of crowdsourcing is 

data crowdsourcing – engaging people to provide data, 

such as product reviews or wildlife observations 

(Lukyanenko and Parsons 2019; Ogunseye and Parsons 

2018). Data crowdsourcing has been successfully used in 

many domains to, for example, understand customers, 

develop new products, improve service quality, and 

support scientific research (Castriotta and Di Guardo 

2011; Hosseini et al. 2014; Tarrell et al. 2013; Tripathi et 

al. 2014).  

As the composition of a crowd is often outside the control 

of those wishing to use crowdsourced data, there is 

limited ability to manage the data collection process and 

ensure the quality of data collected. One popular strategy 

to improve data quality in crowdsourcing is to recruit 

contributors who have the knowledge necessary to 

perform the data collection task (Surowiecki, 2005; 

Wiggins & He, 2016; Wiggins et al., 2011). When 

knowledgeable contributors are scarce or cannot be 

readily identified or targeted, this scarcity can be 

mitigated by training potential contributors to attain the 

desired level of proficiency (Yang et al. 2018). Training 

teaches contributors to provide information that is 

accurate and complete enough to be used for the 

immediate purpose for which a data collection task was 

designed. 

However, crowdsourced data are also often used in ways 

not envisioned when the data were collected (e.g., 

Ballesteros et al., 2014; Bollen et al., 2011; Harrison et 

al., 2014). Data provided by trained contributors might 

not be readily repurposable – that is, usable for tasks 

other than those for which the data collection process was 

designed (Parsons and Wand 2014). One important 

characteristic that makes data repurposable is its diversity 

– the extent to which records in a data set contain 

information about different features of the observed 

phenomena (Ogunseye & Parsons 2018).  

Diverse data contains multiple points of view, allowing it 

to meet the requirements of different users and different 

uses, even lead to discoveries (Ghasemaghaei & Calic, 

2019; Parsons & Wand, 2014; Woodall, 2017). It might 

describe entities of interest in more detail or describe 

entities in addition to those at the focus of a data 

collection task. More diverse data is more repurposable 

than less diverse data. Repurposing data – which is a core 

element of data analytics (Woodall and Wainman 2015) – 

is widespread (Ransbotham and Kiron 2017). It is, 

therefore, beneficial to users of crowdsourced data to 

better understand how training affects the diversity of 

crowdsourced data. 
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Data crowdsourcing can lead to discoveries and new 

insights (Lukyanenko, Wiggins, et al. 2019). For example, 

new species of beetles were discovered by citizen 

scientists (Schilthuizen et al. 2017). Data crowdsourcing 

also led to the rediscovery of a butterfly species thought 

to be extinct (Lawrence 2015). In data crowdsourcing, 

contributors are the first to observe entities and choose 

what to report to data users; contributors determine the 

extent to which discoveries can be made. In this paper, we 

examine the effect of training contributors on the diversity 

of data collected in a crowdsourcing task. We conducted a 

lab experiment asking people to report sightings of 

artificial entities to test the effect of explicit (rule-based) 

training and implicit (exemplar-based) training on data 

diversity. We found that the diversity of data collected 

depends on whether and how we train crowd members.  

Next, we describe the theoretical foundations for our 

study and propose several hypotheses about the effects of 

training on diversity. We then describe our experiment, 

present the results, and discuss the implications of our 

findings. 

THEORETICAL FOUNDATION AND HYPOTHESES 

To understand how training affects the diversity of 

crowdsourced data, it is important to understand how 

people learn, as learning is the desired outcome of 

training. An important element of human learning is 

categorization – the process of grouping instances based 

on their similarity. According to categorization theory, 

when humans seek to identify an entity, we observe its 

attributes and compare them with those of categories we 

already know (Goldstone and Kersten 2003; Harnad 

2005; Piaget and Inhelder 1969; Rosch 1973). If the 

attributes of the new entity to match those of a known 

category, we classify the new entity as a member of that 

category. In general, this requires focusing on a subset of 

the observable attributes of the entity – namely, those 

needed to match those of a known category. When we are 

unable to match the observed attributes of an entity to 

those of a known category, we might create a new 

category for the entity and pay attention to the attributes 

of the entity that distinguish it from known categories 

(Katsuki and Constantinidis 2014; Wolfe 1994). Research 

on how infants, young children, and adults learn supports 

this reasoning. For example, infants (six to eight months) 

and young children who lack prior knowledge tend to pay 

attention to more of an entity’s attributes than adults. 

Adults tend to pay attention to a few specific attributes of 

an entity needed to categorize it (Best et al. 2013; Gelman 

and Markman 1986; Kloos and Sloutsky 2008). 

When observing an entity in the world, many attributes of 

both the entity and its surroundings compete for our 

attention at any one time. Given our limited cognitive 

resources, we tend to focus on a few critical attributes that 

help in categorizing the focal entity (Bjorklund and 

Harnishfeger 1990); in doing so, we tend to ignore 

attributes (and any other entities in our perceptual field) 

that are irrelevant to categorizing it (Prat-Ortega and de la 

Rocha 2018). This phenomenon is called selective 

attention: “the differential processing of simultaneous 

sources of information” (Johnston and Dark 1986, p. 44). 

When we seek to classify an entity into a known category, 

our selective attention is knowledge-driven and allocated 

in a top-down manner (Katsuki and Constantinidis 2014), 

“derived from knowledge about the current task” 

(Buschman and Miller 2007, p. 1860). Our knowledge 

informs us about what attributes are important to 

categorize an entity and what attributes to look for 

(Wickens and McCarley 2008).  

On the other hand, if adults encounter an unfamiliar entity 

(one not similar to known categories), we tend to notice 

attributes that stand out (Gopnik 2009). We do not have a 

basis to selectively attend to attributes and, thus, our 

attentional allocation is more bottom-up or stimulus 

driven. In bottom-up attentional allocation, “target stimuli 

‘pop out’ if they differ sufficiently from their background 

in terms of features such as color or orientation” (Katsuki 

& Constantinidis, 2014, p 509). Bottom-up attention is 

driven by the salient attributes inherent in stimuli 

(Buschman & Miller, 2007), and by the cognitive effort 

required to search for attributes, rather than a 

predetermined strategy to focus on attributes relevant to a 

particular category. Salient attributes are attributes that 

are prominent in a contributor’s visual space. Attributes 

of stimuli, such as their color, size, and shape, affect their 

capacity to attract an observer’s attention (Theeuwes 

2010) and are the default attention capture mechanism 

when the contributor has no prior knowledge or 

insufficient prior knowledge guiding their attention 

allocation (Buschman and Miller 2007; Katsuki and 

Constantinidis 2014). 

Selective attention provides a suitable foundation for 

understanding the impact of training on data diversity in 

crowdsourcing. Trained contributors have the knowledge 

to categorize entities based on their attributes and are 

expected to apply selective attention in focusing on 

attributes relevant to categorization. Untrained 

contributors lack this knowledge and are expected to 

report observed attributes of entities, whether or not these 

are germane to a particular categorization.  

Explicit training – teaching contributors the rules needed 

to identify or categorize an entity – enables contributors 

to apply top-down attentional control. It provides 

contributors with diagnostic attributes; that is, attributes 

that must be individually present for an entity to belong to 

that category and are collectively sufficient to categorize 

the entity. It leads contributors to look for specific 

attributes of an entity to be present when they observe it 

and leads them to focus on these expected attributes when 

categorizing the entity (Hoffman and Rehder 2010). In the 
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absence of explicit training, learning can also take place 

by observation (implicit learning). Exposure to instances 

of a category allows contributors to infer diagnostic 

attributes by observing the similarities in attributes 

between members of the category to which they have 

been exposed (Rosch 1973). When learning implicitly, the 

learner attends to as many salient attributes as possible, 

which can lead to more attributes than necessary being 

learned, including some that are not diagnostic for the 

category.  

Trained contributors are expected to selectively attend to 

the diagnostic attributes of a primary entity and will 

report more of these attributes than untrained contributors. 

However, untrained contributors are not expected to 

selectively attend to diagnostic attributes or a target 

entity. They are instead expected to report more attributes 

in aggregate about all entities in their visual field than are 

explicitly or implicitly trained contributors, implying 

greater diversity in the data they report. Implicitly trained 

contributors, who have been exposed to entities and their 

attributes, are expected to exhibit less selectively in 

attending to diagnostic attributes and are expected to 

report more diverse data than explicitly trained 

contributors.  

H1: Untrained contributors will report more 

total attributes of observed entities than will 

implicitly trained contributors, who, in turn, will 

report more total attributes than will explicitly 

trained contributors.  

Training leads contributors to focus on the diagnostic (for 

categorization) attributes of entities. Knowledge of the 

diagnostic attributes to categorize an entity helps reduce 

the cognitive resources expended on identification tasks 

by reducing the attention allocated to attributes that are 

irrelevant to identifying the entity. These irrelevant, 

nondiagnostic attributes can be attributes inherent in the 

entity. There may also be attributes that inform us of the 

entity’s actions (behavioral attributes) or its state in 

relation to other entities in its environment (mutual 

attributes). It is more cognitively economical for an 

explicitly trained contributor to focus on diagnostic 

attributes when observing an entity, and to ignore 

nondiagnostic attributes, adhering to the rules they have 

been taught. Implicitly trained contributors attempt to 

determine which attributes of the target entity are 

diagnostic by observing attributes common to all 

instances of a category to which they are exposed. Doing 

so is possible because people can learn to classify entities 

in an unsupervised way by studying the statistical 

frequency of entity attributes from repeated exposure to 

stimuli (Barlow 1989; Kloos and Sloutsky 2008); 

however, it is less efficient and less effective than explicit 

training. For implicitly trained contributors, the process of 

identifying diagnostic attributes entails first paying 

attention to the prominent attributes of the entity and then 

revising the mental list of relevant attributes with each 

exposure to an entity until they are confident about the 

valuable attributes and those that are irrelevant to a task. 

Implicitly trained contributors, who use a bottom-up 

approach to infer diagnostic attributes, are expected to 

attend to more attributes of a target entity while learning 

about the entity than explicitly trained contributors, 

including non-diagnostic attributes.  

Implicitly trained contributors and untrained contributors 

use bottom-up attentional allocation, but implicit learners 

are already sensitized to the target entity via exposure to it 

during training. Implicitly trained contributors are 

expected to focus on the target entity they have learned 

about through exemplars when other entities are present 

in their visual fields. In comparison, untrained 

contributors are not expected to selectively attend to 

diagnostic attributes useful for categorizing an instance; 

instead, they will attend to the attributes of both primary 

and any other secondary entities in their visual field based 

on the salience of these attributes (and therefore the 

salient entities). Unlike implicitly trained contributors, 

untrained contributors are not sensitized to any one entity. 

We expect their attention to be more dispersed across 

their visual field and not limited to the target entity. 

Untrained contributors will, therefore, be less likely than 

implicitly trained contributors to report nondiagnostic 

attributes of a singular target entity when there are other 

entities present in their visual field. However, untrained 

contributors will report more nondiagnostic attributes than 

explicitly trained contributors who focus on diagnostic 

attributes corresponding to the rules they learned.  

H2a: Implicitly trained contributors will report 

more nondiagnostic attributes of a target entity 

than will Untrained contributors who, in turn, 

will report more nondiagnostic attributes of a 

target entity than will Explicitly trained 

contributors.  

Since training helps implicitly trained contributors screen 

out attributes of an entity considered irrelevant to the data 

crowdsourcing tasks and prioritize attributes that 

frequently occur in observed exemplars, implicitly trained 

contributors are expected to report fewer non-diagnostic 

attributes that are not consistent across the exemplars or 

an inherent part of the exemplars of the target entity 

observed during training. These include attributes that 

describe the entity’s behavior and state in relation to other 

entities and the entity’s environment. Similarly, since 

attributes extrinsic to an entity, like its environment, 

cannot always be predicted, they may not be included in 

the rules taught to explicitly trained contributors, and 

hence would not be expected to be reported by explicitly 

trained contributors. However, untrained contributors, 

because of their lack of tendency to selectively attend to 
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any specific attributes, are more likely to report the 

mutual and behavioral nondiagnostic attributes of a target 

entity.  

H2b: Untrained contributors will report more 

mutual and behavioral attributes of a target 

entity than will trained contributors. 

Trained contributors who already know the target entity 

will be more likely to pay attention to it during a data 

reporting task, allocating less attention to other stimuli in 

their visual field. Because trained contributors are familiar 

with the target entity and its diagnostic attributes and 

view the tasks as identifying whether or not a focal entity 

belongs to a particular category, they will commit their 

cognitive resources to determine whether the target entity 

possesses these diagnostic attributes. When target entities 

are interacting with secondary entities in their 

environments, trained contributors will pay less attention 

to such interactions than will untrained contributors. For 

example, some mosquitoes are known to live in 

containers (Ritchie et al., 2003; Sprenger, 1987). In a 

reporting task about mosquitoes, trained contributors 

might focus on identifying the entity, and not mention the 

container. However, such information would be important 

to understanding if the mosquito is a Zika virus 

transmitting type1, should there be a need to repurpose the 

data for such use.  

Training will lead to learned inattention to secondary 

entities (Hoffman and Rehder 2010). Explicitly trained 

contributors know the “valuable” attributes of the entity 

and will concentrate on verifying their presence while 

ignoring other stimuli in their visual fields. Implicitly 

trained contributors who have learned diagnostic 

attributes through exemplars will also pay more attention 

to target entities they have been exposed to during 

training than to new entities. However, because they do 

not have to adhere to any classification rules, unlike 

explicitly trained contributors, their attention is expected 

to be more distributed over the visual space. Therefore, 

they are expected to report more information about 

secondary entities than explicitly trained contributors. 

Untrained contributors are expected to have the greatest 

tendency to pay attention to other entities when they are 

present in their field of vision because they are less task-

directed and are more salience-driven than implicitly 

trained contributors. We expect that if any other entities in 

the contributor’s visual field stand out, then an untrained 

contributor who has not been primed to focus on any 

entity will report information about those entities than 

trained contributors. 

 

1 The Aedes aegypti mosquito, which transmits the Zika virus, is a 

“container-breeding mosquito” (“Zika, Mosquitoes, and Standing Water 

| | Blogs | CDC” 2016) 

H3: Untrained contributors will report more 

data about secondary stimuli and their attributes 

than will implicitly trained contributors, who, in 

turn, will report more of these stimuli and 

attributes than will explicitly trained 

contributors.  

When contributors are trained using exemplars or rules, 

they expect the instances they encounter in the real world 

to either meet the rules or violate them. These rules 

typically consist of attributes and their values (e.g., red 

tail, where red is the value of the color attribute of the 

entity’s tail). It is possible that not all differences in 

attribute values of instances of the phenomenon are 

accounted for in the rules they were taught or the 

exemplars to which they were exposed during training. 

The potential existence of instances whose attribute 

values (e.g., their color, number, shape or size) deviate 

from the values to which they were exposed in training is 

most prevalent when crowdsourcing for information about 

living organisms or phenomena where human knowledge 

is limited. For example, organisms (including plants and 

animals) are still undergoing speciation - forming new 

and distinct species due to evolution (Levin 2019; Ritchie 

and Immonen 2010; Wilkerson et al. 2015), and there is 

still so much we do not know about the universe. While 

classifying galaxies from images, a data contributor to the 

GalaxyZoo project – Hanny van Arkel – helped identify a 

“brand new type of astronomical object previously 

unknown to scientists” because she flagged some of its 

attributes as atypical; “it appeared as a blue squiggle” 

(“Hanny’s Voorwerp – History of a Mystery” 2013). How 

training affects a contributor’s ability to report attribute 

values that may lead to differentiation is pertinent in data 

crowdsourcing where discoveries are possible and 

welcomed. It is also important when incorrect 

classifications can have immense consequences, such as 

in ecological classifications (Wang et al., 2008). 

Selective attention from training can limit trained 

contributors’ reporting of differentiated attribute values in 

attributes for which they exhibit learned inattention or did 

not prioritize. Contributors, because of their training, may 

not attend to some attributes that are irrelevant to 

identifying an entity and thus not notice if that attribute is 

missing in a future instance. Also, contributors may have 

attended to an attribute but have not considered it 

pertinent to their task, and have not used it in their 

classification rule; thus, they might notice if the attribute 

is missing in a new instance of the entity, but not notice if 

the attribute is different (e.g., has a short tail, when all 

previous examples had a long tail) (Simons and Rensink 

2005). When contributors encounter entities during a data 

crowdsourcing project, some attributes of these entities 

might possess unfamiliar attribute values. For example, 

two observed instances of a species of insect may deviate 

from a contributor’s previously observed instances for the 

following reasons: (1) an instance does not have antennae; 
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and (2) an instance has blue antennae instead of black. If 

the contributor did not attend to the antenna when they 

learned about the insect, they may not notice antenna are 

missing in case 1 and would not report it as a 

differentiated attribute value for that instance. If the 

contributor, however, attended to antennas but deciphered 

that it is an impertinent attribute for their task, they may 

not recall the color and would not report the blue color in 

case 2 as a differentiated attribute value.  

Trained contributors selectively attend to a specific set of 

attributes, and their focus on these few specific attributes 

is expected to improve their capacity to notice and report 

differentiated attribute values when they occur in an 

observed instance. This effect will be stronger for 

explicitly trained contributors than for implicitly trained 

contributors. We expect that explicitly and implicitly 

trained contributors will report more differentiated 

attribute values affecting diagnostic attributes than will 

untrained contributors, because, unlike untrained 

contributors, they will allocate their attention mainly to 

the diagnostic attributes of the target entity. 

H4: Explicitly trained contributors will report 

more differentiated attribute values involving the 

diagnostic attributes of a target entity than will 

implicitly trained contributors, who, in turn, will 

report more differentiated attribute values than 

will untrained contributors. 

Explicitly trained contributors will report fewer 

occurrences of differentiated attribute values than 

untrained contributors when the attributes affected are 

nondiagnostic. Unlike explicitly trained contributors, 

implicitly trained contributors will report more 

differentiated attribute values in nondiagnostic attributes, 

because they have learned these attributes while 

developing their classification rules. Untrained 

contributors will report fewer differentiated attribute 

values than implicitly trained contributors because they 

have not learned which attributes are consistent across 

instances and their attention is more dispersed across the 

visual field. Thus, they do not know what attributes of a 

target entity are usual or atypical. 

H5: Implicitly trained contributors will report 

more differentiated attribute values involving the 

nondiagnostic attributes of a target entity than 

will explicitly trained contributors and untrained 

contributors. 

STUDY DESIGN  

We designed an experiment in the context of citizen 

science, a type of crowdsourcing in which citizens 

contribute to data collection and/or analysis, defining the 

research question, or even designing a study while 

gaining scientific knowledge through their involvement in 

the research. Citizen science projects often seek 

knowledgeable contributors; “most projects show greater 

concern over the lack of contributor expertise than the 

lack of analysis methods suited to the type of data 

generated in citizen science” Wiggins et al. (2011, p. 17). 

Many citizen science projects are interested in discoveries 

(Lukyanenko, Parsons, et al. 2019). It is, therefore, a 

suitable context to test the impact of training on 

information diversity. 

The target artificial stimuli used in this study are called 

tyrans. These stimuli were designed following Kloos and 

Sloutsky’s (2008) artificial stimuli. Tyrans are defined as 

a class (species) of artificial insects whose members meet 

a classification rule (a set of attributes and values of these 

attributes). Stimuli that do not meet this rule are 

nontyrans. The classification rule consists of five 

requirements: tyrans have (1) a short tail, (2) light blue 

bodies, (3) two or three buttons on their light blue bodies, 

(4) blue wings, and (5) either one or two rings on each 

blue wing. Nontyrans may share various attributes with 

tyrans but will fail to meet at least one of the 

predetermined diagnostic requirements. Each image was 

presented to participants in a separate PowerPoint slide. 

Figure 1 shows a sample tyran and a sample nontyran 

used in the experiment. 

We tested the experimental materials with 12 ecology 

students who are familiar with observing and reporting 

organisms in the field. We tested for the suitability of the 

prompt to elicit unbiased responses from contributors. We 

found that asking contributors a nonleading question, i.e., 

“what do you see?”2 was less biasing than asking them to 

identify the entity they observed. We also tested for the 

complexity of the task and the ease of learning the 

classification rule to ensure that the number of attributes 

in the classification rule did not make the task too 

complex for the participants. From the results, we 

simplified the classification rule to consist of five 

attributes of the target entity. We conducted another 

pretest to examine the effect of the changes made based 

on our initial pretest. Fifteen business students 

participated in the second pretest, which identified the 

appropriate duration of the reporting tasks and confirmed 

the effectiveness of the changes made due to the first 

pretest. All participants recorded their sightings on an 

answer sheet. Based on our findings from the pretests, we 

set the display time for each image presented to the 

participants to 40 seconds.  

 

 

2 This is the prompt used by eBird, a popular citizen science platform 

(www.ebird.org). 
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Tyran. It follows the classification rule: two blue 
wings, a short tail, a light blue body, two or three 
buttons on the light blue body, and one or two rings 
on each blue wing. 

Nontyran because it has three rings on each 
wing. The number of legs is not diagnostic. 

Figure 1. Sample Tyran and Nontyran Images 

Various images of tyrans and nontyrans were created to 

test our hypotheses. Figure 2 shows some of the 

diagnostic and nondiagnostic attributes of the target  

entity. It is an example of a manipulated Tyran image 

with shorter wings and a differently colored tail. In Figure 

2, a change to a diagnostic attribute has occurred.  

 

Sources of Nondiagnostic 

Information 

Secondary entities 

Antennae 

Blue wings 

Rings 

Tail 

Buttons 

Light blue body 

Sources of Diagnostic 
Information 

 

Figure 2. Manipulations of Diagnostic and Nondiagnostic Attributes 

 

We presented sixteen images (a mixture of tyrans and 

nontyrans) to the participants, and all sixteen images test 

the capacity of contributors to report accurate and diverse 

information. However, six images included manipulations 

of the diagnostic attributes and nondiagnostic attributes of 

the target entity, i.e., three for each attribute type. For  

 

example, even though nondiagnostic, the antennae are 

shorter in some of the tyrans images presented than in 

those presented in the training phase of the experiment. 

The presence of patterns on the wings of some tyrans, the 

number and shape of antennae, and the number of legs on 

the tyrans are differentiated attribute values we included 

in the images. 

Four slides containing catch items were placed 

intermittently among the test item slides (tyran and 

nontyran insects) to check whether the participants were 
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paying attention throughout the experiment. The catch 

items were differently shaped/colored stimuli that were 

not insects, and each participant was expected to correctly 

report them as nontyrans or to provide specific 

descriptions of their attributes. The slides were presented 

in a nonrandomized order to all three groups, with image 

5, 10, 15, and 20 containing catch items not related to the 

actual task. 

Participants in the explicitly trained group were provided 

with the classification rule introduced above for 

classifying stimuli as either tyrans or nontyrans. They 

went through a training phase in which they were taught 

the rule and were shown five sample tyrans to allow them 

to become familiar with applying the criteria in the 

classification task. Following the Kloos and Sloutsky 

(2008) study, participants were not shown images of the 

distractor stimuli or nontyrans, as we assumed 

participants could encounter infinitely many types of 

nontyrans when classifying in the field, making it 

unrealistic to show all possible non-tyrans. The 

participants were also tested on their knowledge and 

received feedback on their ability to identify tyrans. We 

presented participants with images and asked whether 

they thought each image was a tyran or not and why. 

After they provided their answers, we showed them the 

correct responses and explained how they satisfied the 

classification rule. 

Those in the implicitly trained group were briefed on the 

task to be performed and were shown the same five target 

stimuli used to teach the explicitly trained group to allow 

them to try to determine the classification criteria. 

However, we did not provide explicit rules to members of 

this group, nor did we give them feedback on their ability 

to determine whether an entity is a tyran or not. 

Additionally, we did not show the untrained group any 

sample images. However, like the other groups, members 

of this group were informed that we were interested in 

examining how people report information.  

Responses from eighty-four participants, who were 

randomly assigned to the three groups (untrained, 

implicitly trained, and explicitly trained), were processed 

after screening for completeness and the attentiveness of 

the contributor. Each group had 28 participants, who were 

all undergraduate university students majoring in 

business. Thirty-six of the participants were male and 

forty-eight were female. 

RESULTS 

We developed a coding scheme that accounts for 

attributes of the target entity and attributes of other 

stimuli reported by participants. The authors agreed on a 

coding scheme, and two of the authors participated in 

coding the first ten reports to establish consensus and 

conformance with the coding scheme. The first author 

coded the remaining reports with the other authors 

reviewing the coded data at different stages of the coding 

process. 

We counted the number of attributes of the stimuli in the 

presented images reported (see sample in Figure 3). 

Additionally, we used a one-way analysis of variance 

(ANOVA) and Tukey’s HSD3 test for post hoc 

comparison of the group averages (excluding the catch 

item images used for screening purposes only) to compare 

the variables described in Table 1 below across the 

groups.  

The components of information diversity are the attributes 

of target entities and secondary entities present in the 

visual field (presented image) of the contributor. Each 

image has one target entity (except in catch images), and 

either no secondary entity or one or more secondary 

entities. Attributes of a target entity that can be used to 

classify it as a tyran or non-tyran are diagnostic attributes. 

Other attributes of an entity that are not important for 

classification are non-diagnostic attributes. Nondiagnostic 

attributes include all mutual and behavior attributes. 

Mutual attributes are attributes that describe the relation 

of one entity to another. Behavior attributes are attributes 

that tell us about the current state of the target entity.  

Secondary entities presented in the images are common 

organisms or objects such as birds, insects, and fences. 

All attributes of secondary entities are nondiagnostic in 

the context of this study as they do not help identify the 

target entity. We, therefore, have two categories of non-

diagnostic attributes – those inherent in the target entity 

(simply referred to as Nondiagnostic Attributes) and those 

not inherent in the entity (e.g., behavioral attributes, and 

attributes describing secondary entities). To ensure the 

results of our analyses are not due to the inherent 

differences in the images presented, we standardized the 

data for each variable across the presented images using 

the Robust Scaler. The Robust Scaler is a standardization 

and variance scaling technique provided in the Scikit-

learn machine learning package of Python, and it is the 

most accommodating of outliers since it uses data in the 

1st and 3rd quartiles to center and scale the entire data set; 

extremely high values do not have any effect on the 

results (www.scikit-learn.org). 

To determine the difference in diversity between 

participants who have received different types of training 

about the entity, we compared the aggregate number of 

attributes reported by each group. Information diversity – 

the number of unique attributes reported by contributors 

about an entity of interest, information diversity is the 

sum of all the attributes reported (see Table 1), which is 

as follows:  

 

3 Tukey’s honestly significant difference (HSD) corrects for multiple 

comparisons (Homack, 2001). 

http://www.scikit-learn.org/
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Information Diversity = Diagnostic Attributes + Nondiagnostic 

Attributes + Behavior Attributes + Mutual Attributes + 

Secondary Entity Attributes + Secondary Entity Mutual + 

Secondary Entity Behavior + Diagnostic Differentiation + 

Nondiagnostic Differentiation 

 

 

 Codes Description 

Accuracy The accuracy of identification of the target entity (tyran or nontyran; trained groups 
only) 

Diagnostic Attributes The number of target entity diagnostic attributes mentioned 

Diagnostic Values The number of values reported for each diagnostic attribute of the target entity., i.e., 
the amount of information reported for each attribute; for example, the values for 
the diagnostic attribute blue wings may be “short”  

Nondiagnostic Attributes The number of target entity nondiagnostic attributes mentioned 

Nondiagnostic Values The number of attribute values for nondiagnostic attributes (e.g., the color of the 
tail, where the presence of a tail is a diagnostic attribute, the length of the tail is a 
diagnostic value, but the color of the tail is a nondiagnostic attribute value even 
though the tail is diagnostic) 

Behavior Attributes Entity behavior: descriptions provided for the behavior or perceived activity of the 
entity 

Mutual Attributes Entity mutual attribute: descriptions provided for the relationship of the target 
entity in terms of other entities, including its environment 

Secondary Entities The number of secondary entities reported 

Secondary Entity Attributes Secondary entity attribute (attributes of secondary entities) 

Secondary Entity Mutual Secondary entity mutual attribute: description of the relationship between 
secondary entities  

Secondary Entity Behavior The number of descriptors of secondary entity behavior reported  

Diagnostic Differentiations  The number of differentiated attribute values in the diagnostic attributes reported 

Nondiagnostic 
Differentiations  

The number of differentiated attribute values in the nondiagnostic attributes 
reported 

Table 1. Variables Coded in the Contributed Data 

Information diversity is significantly different across 

groups, with , . Table 2 

shows that for information diversity, the group mean of 

the untrained group is significantly higher than those of 

the explicitly trained and implicitly trained groups.  

In addition, the group average of the implicitly trained 

group is significantly greater than that of the explicitly 

trained group. This supports Hypothesis 1. 

 

 

Information 
Diversity  

A B mean(A) mean(B) Mean 
Diff. 

Std. 
Err 

T p-value  

E I 4.070 7.433 -3.363 0.383 -8.777 0.001 0.079 

E U 4.070 8.984 -4.914 0.383 -
12.825 

0.001 0.155 

I U 7.433 8.984 -1.551 0.383 -4.048 0.001 0.018 

   E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 
 

Table 2. Results for the Effect of Training on Information Diversity 

For the specific attribute types that make up the 

information diversity aggregate, we compared the number 

of Nondiagnostic Attributes of the target entity between 

the treatment conditions. For each image presented to the 

participants, we also compared other nondiagnostic 

attributes, such as attributes describing the state of the  
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target entity (Behavior Attributes) and attributes 

describing the target entity’s interaction with other 

entities or with its environment (Mutual Attributes). The 

results are presented in Table 3. The mean value of 

Nondiagnostic Attributes is significantly different across 

the three groups, with F (2,1341) = 60.405, .  

The average number of nondiagnostic attributes reported 

is highest for the implicitly trained group and lowest for 

the explicitly trained group. The number of attributes 

reported that describe the target entity’s behavior 

(Behavior Attributes) is also significantly different across 

groups. The group averages for the explicitly trained and 

implicitly trained groups are significantly lower than that 

for the untrained group. However, the explicitly trained 

and implicitly trained groups are not significantly 

different. The number of mutual attributes is also 

significantly different across groups. For mutual attributes 

(Mutual Attributes), we again observe that the group 

means of the explicitly trained and implicitly trained 

groups are significantly lower than that of the untrained 

group but the same for the explicitly trained and 

implicitly trained groups. These results support 

Hypotheses 2a and 2b. Beyond intrinsic nondiagnostic 

attributes, untrained contributors were better than trained 

contributors at reporting the behavior (Behavior 

Attributes) and state (Mutual Attributes) of the entities. 

 

 A B mean(A) mean(B) Mean 
Diff. 

Std. 
Err 

T p-
value 

 

Nondiagnostic 

Attributes 

E I 0.580 2.801 -2.221 0.205 -10.844 0.001 0.116 

E U 0.580 2.009 -1.429 0.205 -6.975 0.001 0.052 

I U 2.801 2.009 0.792 0.205 3.869 0.001 0.016 

Behavioral 
Attributes 

E I 0.045 0.022 0.022 0.062 0.362 0.900 0.000 

E U 0.045 0.491 -0.446 0.062 -7.243 0.001 0.055 

I U 0.022 0.491 -0.469 0.062 -7.605 0.001 0.061 

Mutual Attributes E I 0.681 0.725 -0.045 0.151 -0.295 0.900 0.000 

E U 0.681 1.763 -1.083 0.151 -7.162 0.001 0.054 

I U 0.725 1.763 -1.038 0.151 -6.867 0.001 0.050 

Secondary 
Entities 

E I 1.036 1.544 -0.508 0.109 -4.674 0.001 0.029 

E U 1.036 2.289 -1.253 0.109 -11.521 0.001 0.154 

I U 1.544 2.289 -0.745 0.109 -6.847 0.001 0.060 

Secondary Entity 
Attributes 

E I 0.246 1.261 -1.016 0.162 -6.274 0.001 0.042 

E U 0.246 1.730 -1.484 0.162 -9.170 0.001 0.086 

I U 1.261 1.730 -0.469 0.162 -2.896 0.011 0.009 

Secondary Entity 
Behavior 

E I 0.056 0.257 -0.201 0.085 -2.368 0.047 0.006 

E U 0.056 0.491 -0.435 0.085 -5.131 0.001 0.029 

I U 0.257 0.491 -0.234 0.085 -2.763 0.016 0.008 

Secondary Entity 
Mutual 

E I 0.826 0.547 0.279 0.134 2.078 0.094 0.005 

E U 0.826 1.105 -0.279 0.134 -2.078 0.094 0.005 

   E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 
 

Table 3. Results for the Effect of Training on Attribute Types 

For the secondary entities, we analyze the variables 

Secondary Entities, Secondary Entity Attributes, 

Secondary Entity Behavior, and Secondary Entity Mutual. 

As predicted, the untrained group reported more 

secondary entities than the trained groups, and the  

implicitly trained contributors reported more than the 

explicitly trained. The mean for Secondary Entity 

Attributes is significantly different across groups: the 

untrained group is the highest, and the explicitly trained 

group is the lowest. Secondary Entity Behavior is also 
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significantly different across the three groups. The 

average Secondary Entity Behavior for the untrained 

group is the highest, significantly higher than that of the 

explicitly trained group, which is the lowest. However, 

there is no statistically significant difference between the 

number of Secondary Entity Behavior reported by the 

untrained and implicitly trained groups. Secondary Entity 

Mutual is also significantly different across groups. For 

Secondary Entity Mutual, the mean of the untrained group 

is significantly higher than those of the explicitly trained 

and implicitly trained groups; however, there is no 

significant difference between the explicitly trained and 

implicitly trained groups. These results support 

Hypothesis 3. Untrained contributors are better than 

trained contributors at reporting secondary entities and 

their states.  

The number of differentiated attribute values in the target 

entity is measured using the variables Diagnostic 

Differentiation and Nondiagnostic Differentiation. To 

compare the difference in these variables across the 

groups, we used one-way ANOVA. The results of the 

post hoc comparison of the group means are shown in 

Table 4.

 A B mean(A) mean(B) Mean Diff. 
Std. 
Err 

T 
p-

value  

Diagnostic 
Differentiations 

E I 0.112 0.100 0.011 0.044 0.252 0.900 0.000 

E U 0.112 0.056 0.056 0.044 1.261 0.419 0.002 

I U 0.100 0.056 0.045 0.044 1.008 0.664 0.001 

Nondiagnostic 
Differentiations 

E I 0.011 0.279 -0.268 0.052 
-

5.150 
0.001 0.029 

E U 0.011 0.067 -0.056 0.052 
-

1.073 
0.610 0.001 

I U 0.279 0.067 0.212 0.052 4.077 0.001 0.018 

            E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 
 

Table 4. Results for the Effect of Training on differentiated attribute values 

From the ANOVA results, the average number of 

Diagnostic Differentiations reported is not significantly 

different across the three groups 

( ) at the 5% level of 

significance. The results of the post hoc tests presented in 

Table 4 also show that there are no significant differences 

in the pairwise group means. This result does not support 

Hypothesis 4. Trained contributors do not do better than 

untrained contributors at reporting differentiated attribute 

values for diagnostic attributes. 

However, group comparisons show that the average for 

Nondiagnostic Differentiations is significantly different, 

with , . From Table 4, the 

implicitly trained group reported significantly more 

attribute differentiation values for nondiagnostic attributes 

than the untrained and explicitly trained groups. There is 

no significant difference in the group means of the 

untrained and explicitly trained groups. While all groups 

reported equal numbers of differentiated attribute values 

in diagnostic attributes, the implicitly trained group 

reported more differentiated attribute values in the  

nondiagnostic attributes. This result supports Hypothesis 

5. 

The primary reason why contributors are trained is to 

ensure they provide high-quality data. Notwithstanding 

the above results, data users might reasonably worry that 

untrained contributors may not report information that 

will be useful for identifying target entities. We therefore 

compared the extent to which trained and untrained  

contributors reported diagnostic attributes of the target 

entity. We found that the number of diagnostic attributes 

reported is not significantly different across groups, with 
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F (2,1341) = 0.92, p = 0.399 at the 5% level of 

significance. Post-hoc analysis also reveals significant 

similarity between all the number of diagnostic attributes  

reported by all groups (see Table 5).

 A B mean(A) mean(B) Mean 
Diff. 

Std. 
Err 

T p-value  

Diagnostic 
Attributes 

E I 1.514 1.440 0.074 0.183 0.407 0.900 0.000 

E U 1.514 1.272 0.242 0.183 1.324 0.383 0.002 

I U 1.440 1.272 0.167 0.183 0.917 0.718 0.001 

E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 
 

Table 5. Results for the Effect of Training on Diagnostic Attributes 

Furthermore, since data users will benefit from 

understanding if they will be trading off traditional 

information quality for information diversity, we also 

tested for the effect of training on information quality. 

The two dimensions of information quality most pertinent 

to information users are accuracy and completeness 

(Wang & Strong, 1995). Accuracy is an operation on the 

attributes of an entity to identify the entity correctly 

(Wand and Wang 1996). Contributors perceive the 

attributes of an entity and analyze those attributes 

matching it to diagnostic attributes in their memory to 

classify it (Harnad, 2005) correctly. Accuracy is correct 

identification and classification (Harnad 2005; Wand and 

Wang 1996). Training provides the knowledge needed to 

classify or identify entities accurately. Contributors who 

show the greatest tendency for selective attention – 

explicitly trained contributors – will be better at 

accurately identifying entities than contributors with more 

flexible attention allocation. Explicitly trained 

contributors have reliable rules to guide their 

classification and exclusion of an entity from a target 

category. Implicitly trained contributors arrive at a 

classification rule guided by the salience of the entity’s 

attributes. They may or may not elicit the correct rule or 

the complete set of diagnostic attributes needed to classify 

an entity and will, therefore, be less accurate than 

explicitly trained contributors. Untrained contributors 

cannot classify entities themselves, as they have no 

knowledge to guide such a classification.  

We analyzed the data from our experiment to understand 

the relationship between training and accuracy. Accuracy 

is valued as one or zero or for each target entity presented, 

depending on whether the contributor correctly identifies 

the target entity as either a tyran or a non-tyran (1) or not 

(0). We compare the proportion of Accuracy  in the 

Explicitly Trained Group and the Implicitly Trained 

Group using a chi-square test. 

 

 

 Accuracy  

Group 0 1 Total 

E 62 

(13.8%) 

386 

(86.2%) 

448 

(100%) 

I 162 

(36.2%) 

286 

(63.8%) 

448 

(100%) 

Total 224 672 895 

E=Explicitly trained group, I= Implicitly trained group, U= Untrained 
group 

 

Table 6. Differences in Accuracy for 
Explicitly and Implicitly Trained Groups 

From Table 6, the chi-squared statistic of independence is 

58.339, with a p-value < 0.0001. The proportion of 

accuracy in the Explicitly Trained Group is 0.862, and the 

proportion accuracy in the Implicitly trained group is 

0.638. Thus, the explicitly trained group is significantly 

more accurate than the implicitly trained group.  

Completeness is the presence of information about an 

entity that is sufficient for a particular use (Nelson et al. 

2005). Completeness includes the breadth and depth of 

information (or attributes) reported about an entity (Wang 

& Strong, 1996). Breadth refers to the number of unique 

attributes reported about an entity, while the depth refers 

to the amount of information provided about each 

attribute. A contributor may mention a bird’s wings and 

tail (breadth of attributes) and also mention that there are 

two wings and a green tail (the attribute values two and 

green gives more depth of information to each attribute). 

Completeness is contextual (Nelson et al. 2005). In the 

context of this study, we define complete information as 

that which is sufficient to identify the observed instance 

and its state. Therefore, information that includes all the 

possible diagnostic and nondiagnostic attributes (intrinsic 

to the entity) is the most complete for identifying the 
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entity. Completeness (breadth) is derived by summing the 

Diagnostic Attributes and Nondiagnostic Attributes 

reported by each contributor for a target entity. Similarly, 

Completeness (Depth) is derived by aggregating the 

diagnostic attribute values (Diagnostic Values) and 

nondiagnostic attribute values (Nondiagnostic Values) 

reported for the target entity 

 

 A B mean(A) mean(B) Mean 
Diff. 

Std. Err T p-
value 

 

Completeness 
(breadth) 

 

E I 2.094 4.241 -2.147 0.322 -6.670 0.001 0.047 

E U 2.094 3.281 -1.187 0.322 -3.688 0.001 0.015 

I U 4.241 3.281 0.960 0.322 2.982 0.008 0.010 

Completeness  

(depth) 

 

E I 1.016 2.773 -1.758 0.289 -6.077 0.001 0.040 

E U 1.016 2.835 -1.819 0.289 -6.289 0.001 0.042 

I U 2.773 2.835 -0.061 0.289 -0.212 0.900 0.000 

  E=Explicitly trained group, I= Implicitly trained group, U= Untrained group 
 

Table 7. Differences in Completeness 

The breadth of attributes reported is significantly different 

across the groups with , . 

The post hoc test results from Table 7 shows that the 

explicitly trained group reported significantly fewer 

attributes about the target entity than did the implicitly 

trained group and the untrained group. The untrained 

group reported fewer attributes about the target entity than 

did the implicitly trained group. Depth is also 

significantly different across the groups with 

, . The post-hoc test 

results show that the average depth for the untrained 

group is significantly greater than the average depth for 

the explicitly trained group. The implicitly trained group 

also has a mean that is greater than that of the explicitly 

trained group but significantly different from that of the 

untrained group. 

Explicitly trained contributors focus on the diagnostic 

attributes to which they have been introduced and ignore 

attributes that are not diagnostic, providing incomplete 

information about the observed entity. Implicitly trained 

contributors use a bottom-up approach to learn attributes 

during training; thus, they have attended to non-diagnostic 

attributes as well as diagnostic attributes of the target 

entity. Implicitly trained contributors, therefore, report 

more complete data (breadth and depth) about a target 

entity than explicitly trained contributors. While, in 

comparison, untrained contributors distribute their 

attention broadly across all salient entities in the visual 

field, including the salient attributes of secondary entities, 

attempting to report as much breadth and depth of 

information as possible. They, therefore, report less 

breadth of attributes about the target entity than implicitly 

trained contributors as they trade-off focusing on the 

target entity alone for focusing on all the entities in their 

visual field, but more depth of values for the attributes 

they deem salient enough to report about. 

DISCUSSION 

Potential contributors to data crowdsourcing projects are 

frequently trained based on the assumption that 

contributor knowledge is necessary for obtaining high-

quality crowdsourced data. However, our study raises 

important questions about this assumption. We found that 

training does not affect the accuracy of attributes that 

crowds report. Both trained and untrained contributors 

report diagnostic attributes with similar levels of 

accuracy. In addition, training does not affect the 

reporting of diagnostic attributes. Contributors, whether 

trained or untrained, can report the attributes needed to 

accurately identify an entity. However, training affects the 

contributors’ ability to report diverse data. Untrained 

contributors report more diverse data than trained 

contributors (i.e., attributes beyond those required for a 

classification task). Some crowdsourcing tasks involve 

collecting data about fleeting phenomena, so there is no 

opportunity to observe an entity again later. Therefore, 

organizations might want to capture as much detail about 

a phenomenon as they can the first time; untrained 

contributors might be best suited to such ventures. 

Moreover, attributes that are unimportant in one data use 

context can become important in another (Hoffman and 

Rehder 2010; Ogunseye and Parsons 2016). In such cases, 

untrained contributors are more likely to provide the most 

repurposable data.  

Differentiated attribute values noticed in instances can 

convey useful information, such as the existence of a new 

subclass of an entity (or a new class of entities) or lead to 

other discoveries about an entity. If the goal of a data 

crowdsourcing task includes making discoveries by 

collecting differentiated attribute values for salient 

diagnostic attributes, then training offers no benefits, but 

instead unnecessarily limits the inclusiveness of the data 
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crowdsourcing project. However, since implicitly trained 

contributors are better than explicitly trained and 

untrained contributors at reporting differentiated attribute 

values in nondiagnostic attributes, contributors should be 

trained implicitly in projects where the differentiated 

values for nondiagnostic attributes can also lead to 

discoveries. 

Information quality is tied to a specific use context 

(Nelson et al. 2005; Wang et al. 1995). Therefore, data 

collected with attention to traditional information quality 

dimensions such as completeness and accuracy might not 

be useful when information needs to be repurposed, 

requiring resource-intensive changes to the 

crowdsourcing project or repeating the crowdsourcing 

tasks. The completeness of attributes reported in 

crowdsourced information about a target entity is also 

affected by training. All contributors, trained or untrained, 

reported attributes; however, explicitly trained 

contributors reported the least complete data and 

implicitly trained contributors reported the most. 

Explicitly trained contributors selectively attended to 

diagnostic attributes to the detriment of other attributes of 

an entity.  

Implicitly trained contributors and untrained contributors 

provide higher quality and more diverse data than 

explicitly trained contributors when they are not required 

to classify entities but accurately report attributes. When 

high-quality repurposable data is the goal of a data 

crowdsourcing project, data users are better off not 

training contributors at all, or training contributors 

implicitly. 

Finally, there are several limitations to the generalizability 

of our findings. First, in our experiment, we used only 

five exemplars in the implicit training condition, which is 

not in general adequate to learn all rules for classifying 

entities. Second, we assume organizations and individuals 

that own and use data crowdsourcing platforms can 

classify entities after data has been collected, based on the 

attribute data provided by contributors (Lukyanenko et 

al., 2019). However, this might not be easy or realistic in 

every case. Third, a comparison of trained and untrained 

contributors works in the context of our study because we 

can understand the descriptions provided by untrained 

contributors about the target artificial entity and the 

images used in the experiment are readily accessible to us 

for confirmation. This is not the case in some real-world 

scenarios, and data users might not be able to understand 

descriptions provided by untrained contributors in the 

field. 

CONCLUSION 

Diverse data is more repurposable, able to meet emergent 

data requirements, and yield more insights to phenomena. 

Diversity would not be important if we know exactly the 

uses of crowdsourced data and if those uses will not 

change. However, this is rarely the case, in part due to the 

widespread use of analytics and machine learning to seek 

insights from data. Many data crowdsourcing projects can 
therefore benefit from the flexibility that diverse data 

affords (Lukyanenko et al. 2016; Ogunseye and Parsons 

2018; Parsons and Wand 2014). 

Users of data crowdsourcing tacitly assume that allowing 

unknown novice data contributors to provide unrestricted 

data is antithetical to the collection of high-quality data. 

Underlying this tacit assumption is the belief that trained 

contributors will provide better quality data than 

untrained contributors and a generally narrow view of 

information quality, whereby organizations focus only on 

collecting accurate (and sometimes complete) data. 

Training intends to promote accuracy, but this study 

shows it can inhibit data diversity. Furthermore, training 

does not affect the capacity of crowds to report diagnostic 

attributes accurately. Both untrained and trained 

contributors accurately report diagnostic attributes, which 

can be used by humans or machines to determine the class 

of an entity. However, explicit training can constrain data-

driven insight and discoveries.  

Data users want data crowdsourcing projects that provide 

insightful data and can lead to discoveries. Achieving this 

requires adjusting or even abandoning some long-held 

notions of what high-quality data is and how to acquire it 

– especially if we want to repurpose our data.  
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